首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
A genetic screen to isolate gene products required for vacuolar morphogenesis in the yeast Saccharomyces cerevisiae identified VAM7, a gene which encodes a protein containing a predicted coiled-coil domain homologous to the coiled-coil domain of the neuronal t-SNARE, SNAP-25 (Y. Wada and Y. Anraku, J. Biol. Chem. 267:18671–18675, 1992; T. Weimbs, S. H. Low, S. J. Chapin, K. E. Mostov, P. Bucher, and K. Hofmann, Proc. Natl. Acad. Sci. USA 94:3046–3051, 1997). Analysis of a temperature-sensitive-for-function (tsf) allele of VAM7 (vam7tsf) demonstrated that the VAM7 gene product directly functions in vacuolar protein transport. vam7tsf mutant cells incubated at the nonpermissive temperature displayed rapid defects in the delivery of multiple proteins that traffic to the vacuole via distinct biosynthetic pathways. Examination of vam7tsf cells at the nonpermissive temperature by electron microscopy revealed the accumulation of aberrant membranous compartments that may represent unfused transport intermediates. A fraction of Vam7p was localized to vacuolar membranes. Furthermore, VAM7 displayed genetic interactions with the vacuolar syntaxin homolog, VAM3. Consistent with the genetic results, Vam7p physically associated in a complex containing Vam3p, and this interaction was enhanced by inactivation of the yeast NSF (N-ethyl maleimide-sensitive factor) homolog, Sec18p. In addition to the coiled-coil domain, Vam7p also contains a putative NADPH oxidase p40phox (PX) domain. Changes in two conserved amino acids within this domain resulted in synthetic phenotypes when combined with the vam3tsf mutation, suggesting that the PX domain is required for Vam7p function. This study provides evidence for the functional and physical interaction between Vam7p and Vam3p at the vacuolar membrane, where they function as part of a t-SNARE complex required for the docking and/or fusion of multiple transport intermediates destined for the vacuole.  相似文献   

2.
VAM7 gene function has shown to be required for proper morphogenesis of the vacuole in yeast. The DNA fragments that complemented the defective vacuolar morphology of the vam7-1 mutation were isolated from a yeast genomic library. An overlapping 2.5-kilobase BglII-HindIII region was found to be sufficient for complementation of the vam7-1 phenotype. This fragment was integrated at the chromosomal VAM7 locus, indicating that it contained an authentic VAM7 gene. On nucleotide sequencing of the VAM7 gene, an open reading frame of 948 base pairs, coding for a hydrophilic polypeptide of 316 amino acid residues, was identified. The deduced amino acid sequence of the carboxyl-terminal region of the VAM7 gene product has heptad repeats and shows potential ability to form a coiled-coil structure. Disruption of VAM7 was not lethal; cells with a disrupted VAM7 gene did not, however, have a prominent large vacuoles but rather numerous small compartments that accumulated the histochemical marker molecule of the vacuolar compartment. They contained mature forms of the vacuolar marker proteins carboxypeptidase Y and vacuolar glycoprotein vgp72. A mutant with both vam7 and vam5 null mutations was constructed and shown to have neither vacuolar structures stained with ade-related fluorochrome nor mature forms of vacuolar marker proteins. These findings suggested that the VAM7 gene product functions in the process of morphogenic assembly of the vacuolar compartment but is not involved in the protein sorting and delivery to the vacuole.  相似文献   

3.
Protein transport in eukaryotic cells requires the selective docking and fusion of transport intermediates with the appropriate target membrane. t-SNARE molecules that are associated with distinct intracellular compartments may serve as receptors for transport vesicle docking and membrane fusion through interactions with specific v-SNARE molecules on vesicle membranes, providing the inherent specificity of these reactions. VAM3 encodes a 283–amino acid protein that shares homology with the syntaxin family of t-SNARE molecules. Polyclonal antiserum raised against Vam3p recognized a 35-kD protein that was associated with vacuolar membranes by subcellular fractionation. Null mutants of vam3 exhibited defects in the maturation of multiple vacuolar proteins and contained numerous aberrant membrane-enclosed compartments. To study the primary function of Vam3p, a temperature-sensitive allele of vam3 was generated (vam3tsf). Upon shifting the vam3tsf mutant cells to nonpermissive temperature, an immediate block in protein transport through two distinct biosynthetic routes to the vacuole was observed: transport via both the carboxypeptidase Y pathway and the alkaline phosphatase pathway was inhibited. In addition, vam3tsf cells also exhibited defects in autophagy. Both the delivery of aminopeptidase I and the docking/ fusion of autophagosomes with the vacuole were defective at high temperature. Upon temperature shift, vam3tsf cells accumulated novel membrane compartments, including multivesicular bodies, which may represent blocked transport intermediates. Genetic interactions between VAM3 and a SEC1 family member, VPS33, suggest the two proteins may act together to direct the docking and/or fusion of multiple transport intermediates with the vacuole. Thus, Vam3p appears to function as a multispecificity receptor in heterotypic membrane docking and fusion reactions with the vacuole. Surprisingly, we also found that overexpression of the endosomal t-SNARE, Pep12p, suppressed vam3Δ mutant phenotypes and, likewise, overexpression of Vam3p suppressed the pep12Δ mutant phenotypes. This result indicated that SNAREs alone do not define the specificity of vesicle docking reactions.  相似文献   

4.
Small GTPases of the Ypt/rab family are involved in the regulation of vesicular transport. These GTPases apparently function during the targeting of vesicles to the acceptor compartment. Two members of the Ypt/rab family, Ypt1p and Sec4p, have been shown to regulate early and late steps of the yeast exocytic pathway, respectively. Here we tested the role of two newly identified GTPases, Ypt31p and Ypt32p. These two proteins share 81% identity and 90% similarity, and belong to the same protein subfamily as Ypt1p and Sec4p. Yeast cells can tolerate deletion of either the YPT31 or the YPT32 gene, but not both. These observations suggest that Ypt31p and Ypt32p perform identical or overlapping functions. Cells deleted for the YPT31 gene and carrying a conditional ypt32 mutation exhibit protein transport defects in the late exocytic pathway, but not in vacuolar protein sorting. The ypt31/ 32 mutant secretory defect is clearly downstream from that displayed by a ypt1 mutant and is similar to that of sec4 mutant cells. However, electron microscopy revealed that while sec4 mutant cells accumulate secretory vesicles, ypt31/32 mutant cells accumulate aberrant Golgi structures. The ypt31/32 phenotype is epistatic to that of a sec1 mutant, which accumulates secretory vesicles. Together, these results indicate that the Ypt31/32p GTPases are required for a step that occurs in the transGolgi compartment, between the reactions regulated by Ypt1p and Sec4p. This step might involve budding of vesicles from the trans-Golgi. Alternatively, Ypt31/ 32p might promote secretion indirectly, by allowing fusion of recycling vesicles with the trans-Golgi compartment.  相似文献   

5.
Ras-related, guanine nucleotide-binding proteins of the Ypt/Rab family play a key role at defined steps in vesicular transport, both in yeast and in mammalian cells. In yeast, Ypt1p has an essential function late in endoplasmic reticulum (ER) to Golgi transport, and the redundant Ypt31/Ypt32 GTPases have been proposed to act in transport through and/or from the Golgi. Here we report that mutant alleles of YPT31 and YPT32, whose gene products have a reduced affinity for GTP, are able to suppress the dominant lethal phenotype of YPT1 N121I . Co-expression of YPT1 N121I and the suppressor YPT31 N126I allow essentially undisturbed secretory transport in the absence of the respective wild-type GTPases. Such mutant cells massively overaccumulate 60–100 nm vesicles and are heat sensitive. It appears likely that the mutant GTPases, which are defective in nucleotide binding, compete for the binding of common interacting protein(s). These and other genetic interactions between YPT1, YPT31/32, ARF1 and SEC4 described here strongly support the view that Ypt31p and Ypt32p have a central, Golgi-associated function in anterograde or retrograde transport. Received: 28 August 1998 / Accepted: 14 October 1998  相似文献   

6.
A Srivastava  E W Jones 《Genetics》1998,148(1):85-98
The PEP12 homolog Pth1p (Pep twelve homolog 1) is predicted to be similar in size to Pep12p, the endosomal syntaxin homolog that mediates docking of Golgi-derived transport vesicles and, like other members of the syntaxin family, is predicted to be a cytoplasmically oriented, integral membrane protein with a C-terminal transmembrane domain. Kinetic analyses indicate that deltapth1/vam3 mutants fail to process the soluble vacuolar hydrolase precursors and that PrA, PrB and most of CpY accumulate within the cell in their Golgi-modified P2 precursor forms. This is in contrast to a pep12 mutant in which P2CpY is secreted from the cell. Furthermore, pep12 is epistatic to pth1/vam3 with respect to the CpY secretion phenotype. Alkaline phosphatase, a vacuolar membrane hydrolase, accumulates in its precursor form in the deltapth1/vam3 mutant. Maturation of pro-aminopeptidase I, a hydrolase precursor delivered directly to the vacuole from the cytoplasm, is also blocked in the deltapth1/vam3 mutant. Subcellular fractionation localizes Pth1/Vam3p to vacuolar membranes. Based on these data, we propose that Pth1/Vam3p is the vacuolar syntaxin/t-SNARE homolog that participates in docking of transport vesicles at the vacuolar membrane and that the function of Pth1/Vam3p impinges on at least three routes of protein delivery to the yeast vacuole.  相似文献   

7.
cDNAs representing nine small G protein genes encoding Ypt proteins from the green algae Volvox carteri (YptV) and Chlamydomonas reinhardtii (YptC) were tested for their ability to complement mutations in the YPT1, SEC4, and YPT7 genes of Saccharomyces cerevisiae strains defective in different steps of intracellular vesicle transport. None of the heterologously expressed algal genes was able to complement mutations in SEC4 or YPT7, but three of them, yptV1, yptC1, and yptV2, restored a YPT1 null mutation. On the amino acid sequence level, and particularly with respect to known small G protein specificity domains, YptVlp and YptVlp are the closest algal analogs of yeast Yptlp, with 70% overall identity and identical effector regions, but YptV2p is only 55% identical to Yptlp, and its effector domain resembles that of Sec4p. To define more precisely the regions that supply Yptlp function, six chimeras were constructed by reciprocal exchange of 68/72-, 122/123-, and 162/163-amino acid segments of the C-terminal regions between YptVlp (complementing) and YptV3p (non-complementing). Segments containing 68 amino acids of the hypervariable C-terminal, and 41 residues of the N-terminal region including the effector region, of YptVlp could be replaced by the corresponding parts of YptV3p without loss of function in yeast, but exchanges within the central core destroyed the ability to rescue the YPT1 mutation. Sequence analysis of ypt1-complementing and -noncomplementing Ypt types suggests that surface loop3 represents a novel specificity domain of small G proteins.  相似文献   

8.
H Wichmann  L Hengst  D Gallwitz 《Cell》1992,71(7):1131-1142
From the budding yeast S. cerevisiae, we have cloned a gene, YPT7, that encodes a GTP-binding protein belonging to the Ypt family of ras-related proteins. The 208 amino acid protein shares identical effector domain and C-terminal sequences with the mammalian Rab7 protein. YPT7 gene disruption did not impair cellular growth at temperatures ranging from 17 degrees C to 37 degrees C. ypt7 null mutants are characterized by highly fragmented vacuoles and differential defects of vacuolar protein transport and maturation. The uptake of alpha factor pheromone by wild-type and Ypt7p-deficient cells was found to be indistinguishable, but in mutant cells lacking Ypt7p, degradation of the endocytosed pheromone was severely inhibited. Our findings suggest a role of Ypt7p in protein transport between endosome-like compartments.  相似文献   

9.
It has been demonstrated that Saccharomyces cerevisiae Vam6p/Vps39p plays a critical role in the tethering steps of vacuolar membrane fusion by facilitating guanine nucleotide exchange on small guanosine triphosphatase (GTPase) Vam4p/Ypt7p. We report here the identification and characterization of a novel protein in Aspergillus nidulans, AvaB, that exhibits similarity to Vam6p/Vps39p and plays a critical role in vacuolar morphogenesis in A. nidulans. AvaB is comprised of 1058 amino acids with amino-terminal citron homology (CNH) and central clathrin homology (CLH) domains, as observed for other Vam6p/Vps39p family proteins. Disruption of avaB in A. nidulans resulted in the fragmentation of vacuoles and reduced growth rate under various growth conditions, implying its importance in maintaining vacuolar morphology and function. Yeast two-hybrid analysis demonstrated the interaction of AvaB with AvaA, a Vam4p/Ypt7p homolog in A. nidulans, as well as the homooligomer formation of AvaB, suggesting that AvaB performs its function through hetero- or homophilic protein-protein interactions.  相似文献   

10.
The small GTPase rab5 has been shown to represent a key regulator in the endocytic pathway of mammalian cells. Using a PCR approach to identify rab5 homologs in Saccharomyces cerevisiae, two genes encoding proteins with 54 and 52% identity to rab5, YPT51 and YPT53 have been identified. Sequencing of the yeast chromosome XI has revealed a third rab5-like gene, YPT52, whose protein product exhibits a similar identity to rab5 and the other two YPT gene products. In addition to the high degree of identity/homology shared between rab5 and Ypt51p, Ypt52p, and Ypt53p, evidence for functional homology between the mammalian and yeast proteins is provided by phenotypic characterization of single, double, and triple deletion mutants. Endocytic delivery to the vacuole of two markers, lucifer yellow CH (LY) and alpha-factor, was inhibited in delta ypt51 mutants and aggravated in the double ypt51ypt52 and triple ypt51ypt52ypt53 mutants, suggesting a requirement for these small GTPases in endocytic membrane traffic. In addition to these defects, the here described ypt mutants displayed a number of other phenotypes reminiscent of some vacuolar protein sorting (vps) mutants, including a differential delay in growth and vacuolar protein maturation, partial missorting of a soluble vacuolar hydrolase, and alterations in vacuole acidification and morphology. In fact, vps21 represents a mutant allele of YPT51 (Emr, S., personal communication). Altogether, these data suggest that Ypt51p, Ypt52p, and Ypt53p are required for transport in the endocytic pathway and for correct sorting of vacuolar hydrolases suggesting a possible intersection of the endocytic with the vacuolar sorting pathway.  相似文献   

11.
We identified nine VAM genes (for vacuolar morphology) by genetic analyses on mutants with defective vacuolar morphologies and assembly in the yeast Saccharomyces cerevisiae. The nine VAM genes were classified into two classes according to the mutant phenotypes. The class I vam mutants (vam1, vam5, vam8, and vam9) show a few small vesicles that are stained with histochemical markers for the vacuolar compartment. They also have defects in the maturation of vacuolar marker proteins, and their growth is hypersensitive to high concentrations of CaCl2 or a temperature of 37 degrees C. There are apparent genetic overlaps among the class I vam mutations and other mutations including cls, end, pep, and vps, which have been shown to be involved in the expression of the vacuolar functions. The class II vam mutants (vam2, vam3, vam4, vam6, and vam7) contain numerous small vesicles stained with the vacuolar histochemical markers and mature forms of the vacuolar proteins and do not show any apparent growth defects in the presence of CaCl2 or at 37 degrees C.  相似文献   

12.
GTPases of the Ypt/Rab family play a key role in the regulation of vesicular transport. Their ability to cycle between the GTP- and the GDP-bound forms is thought to be crucial for their function. Conversion from the GTP- to the GDP-bound form is achieved by a weak endogenous GTPase activity, which can be stimulated by a GTPase-activating protein (GAP). Current models suggest that GTP hydrolysis and GAP activity are essential for vesicle fusion with the acceptor compartment or for timing membrane fusion. To test this idea, we inactivated the GTPase activity of Ypt1p by using the Q67L mutation, which targets a conserved residue that helps catalyze GTP hydrolysis in Ras. We demonstrate that the mutant Ypt1-Q67L protein is severely impaired in its ability to hydrolyze GTP both in the absence and in the presence of GAP and consequently is restricted mostly to the GTP-bound form. Surprisingly, a strain with ypt1-Q67L as the only YPT1 gene in the cell has no observable growth phenotypes at temperatures ranging from 14 to 37°C. In addition, these mutant cells exhibit normal rates of secretion and normal membrane morphology as determined by electron microscopy. Furthermore, the ypt1-Q67L allele does not exhibit dominant phenotypes in cell growth and secretion when overexpressed. Together, these results lead us to suggest that, contrary to current models for Ypt/Rab function, GTP hydrolysis is not essential either for Ypt1p-mediated vesicular transport or as a timer to turn off Ypt1p-mediated membrane fusion but only for recycling of Ypt1p between compartments. Finally, the ypt1-Q67L allele, like the wild type, is inhibited by dominant nucleotide-free YPT1 mutations. Such mutations are thought to exert their dominant phenotype by sequestration of the guanine nucleotide exchange factor (GNEF). These results suggest that the function of Ypt1p in vesicular transport requires not only the GTP-bound form of the protein but also the interaction of Ypt1p with its GNEF.  相似文献   

13.
The yeast protein Ccz1p is necessary for vacuolar protein trafficking and biogenesis. In a complex with Mon1p, it mediates fusion of transport intermediates with the vacuole membrane by activating the small GTPase Ypt7p. Additionally, genetic data suggest a role of Ccz1p in earlier transport steps, in the Golgi. In a search for further proteins interacting with Ccz1p, we identified the endosomal soluble N -ethylmaleimide-sensitive factor attachment protein receptor Pep12p as an interaction partner of Ccz1p. Combining the ccz1 Δ mutation with deletions of PEP12 or other genes encoding components of the endosomal fusion machinery, VPS21, VPS9 or VPS45 , results in synthetic growth phenotypes. The genes MON1 and YPT7 also interact genetically with PEP12 . These results suggest that the Ccz1p–Mon1p–Ypt7p complex is involved in fusion of transport vesicles to multiple target membranes in yeast cells.  相似文献   

14.
M Benli  F Dring  D G Robinson  X Yang    D Gallwitz 《The EMBO journal》1996,15(23):6460-6475
In eukaryotic cells, monomeric GTPases of the Ypt/Rab family function as regulators at defined steps of vesicular transport in exo- and endocytosis. Here we report on the isolation and characterization of two genes (YPT31 and YPT32) of the yeast Saccharomyces cerevisiae which encode members of the Ypt family exhibiting >80% sequence identity. Whereas the disruption of one of the two genes was phenotypically neutral, the disruption of both YPT31 and YPT32 led to lethality. Depletion of wild-type Ypt31p or of a short-lived ubiquitin-Ypt31p in a ypt32 null background led to a massive accumulation of Golgi-like membranes, an inhibition of invertase secretion and defects in vacuolar protein maturation. Similar alterations were observed in a conditional-lethal ypt31-1 mutant at 30 min after shift to the non-permissive temperature. According to subcellular fractionation, a significant part of Ypt31p appeared to be located in Golgi-enriched membrane fractions. In accordance with this, indirect immunofluorescence using affinity-purified anti-Ypt31p antibodies gave a punctate staining similar to that observed with Golgi-located proteins. From the phenotypic alterations observed in ypt31 and ypt32 mutants, it seems likely that the two GTPases are involved in intra-Golgi transport or in the formation of transport vesicles at the most distal Golgi compartment.  相似文献   

15.
The homotypic fusion of yeast vacuoles requires the Rab-family GTPase Ypt7p and its effector complex, homotypic fusion and vacuole protein sorting complex (HOPS). Although the vacuolar kinase Yck3p is required for the sensitivity of vacuole fusion to proteins that regulate the Rab GTPase cycle-Gdi1p (GDP-dissociation inhibitor [GDI]) or Gyp1p/Gyp7p (GTPase-activating protein)-this kinase phosphorylates HOPS rather than Ypt7p. We addressed this puzzle in reconstituted proteoliposome fusion reactions with all-purified components. In the presence of HOPS and Sec17p/Sec18p, there is comparable fusion of 4-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteoliposomes when they have Ypt7p bearing either GDP or GTP, a striking exception to the rule that only GTP-bound forms of Ras-superfamily GTPases have active conformations. However, the phosphorylation of HOPS by recombinant Yck3p confers a strict requirement for GTP-bound Ypt7p for binding phosphorylated HOPS, for optimal membrane tethering, and for proteoliposome fusion. Added GTPase-activating protein promotes GTP hydrolysis by Ypt7p, and added GDI captures Ypt7p in its GDP-bound state during nucleotide cycling. In either case, the net conversion of Ypt7:GTP to Ypt7:GDP has no effect on HOPS binding or activity but blocks fusion mediated by phosphorylated HOPS. Thus guanine nucleotide specificity of the vacuolar fusion Rab Ypt7p is conferred through downstream posttranslational modification of its effector complex.  相似文献   

16.
SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors) mediate specific membrane fusion between transport vesicles or organelles and target membranes. VAM3/SYP22 and PEP12/SYP21 are Qa-SNAREs that act in the vacuolar transport pathway of Arabidopsis thaliana, and are localized predominantly on the vacuolar membrane and the pre-vacuolar compartment (PVC), respectively. Previous studies have shown that loss-of-function mutants of VAM3/SYP22 or PEP12/SYP21 showed male gametophytic lethality, suggesting that VAM3/SYP22 and PEP12/SYP21 possess different, non-redundant functions. We have re-evaluated the effects of mutations in these genes using T-DNA insertion mutants in the Columbia accession. We found that a mutation in VAM3/SYP22 (vam3-1) caused pleiotropic abnormalities, including semi-dwarfism and wavy leaves. In contrast, a loss-of-function mutant of PEP12/SYP21 (pep12) showed no apparent abnormal phenotype. We also found that the double vam3-1 pep12 mutant had severely reduced fertilization competence, although male and female gametophytes (vam3-1(-) pep12(-) ) maintained the ability to fertilize. Moreover, promoter swapping analysis revealed that expression of a GFP-PEP12/SYP21 fusion under the control of the VAM3/SYP22 promoter suppressed all phenotypes of the vam3-1 mutant. These results indicate that the functions of VAM3/SYP22 and PEP12/SYP21 were redundant and interchangeable.  相似文献   

17.
Vacuolar protein sorting (vps) mutants of Saccharomyces cerevisiae missort and secrete vacuolar hydrolases. The gene affected in one of these mutants, VPS21, encodes a member of the Sec4/Ypt/Rab family of small GTPases. Rab proteins play an essential role in vesicle-mediated protein transport. Using both yeast two-hybrid assays and chemical cross-linking, we have identified another VPS gene product, Vps9p, that preferentially interacts with a mutant form of Vps21p-S21N that binds GDP but not GTP. In vitro purified Vps9p was found to stimulate GDP release from Vps21p in a dose-dependent manner. Vps9p also stimulated GTP association as a result of facilitated GDP release. However, Vps9p did not stimulate guanine nucleotide exchange of GTP-bound Vps21p or GTP hydrolysis. We tested the ability of Vps9p to stimulate the intrinsic guanine nucleotide exchange activity of Rab5, which is a mammalian sequence homologue of Vps21p, and Ypt7p, which is another yeast Rab protein involved in vacuolar protein transport. Rab5, but not Ypt7p was responsive to Vps9p, which indicates that Vps9p recognizes sequence variation among Rab proteins. We conclude that Vps9p is a novel guanine nucleotide exchange factor that is specific for Vps21p/Rab5. Since there are no obvious Vps9p sequence homologues in yeast, Vps9p may also possess unique regulatory functions required for vacuolar protein transport.  相似文献   

18.
The Msb3p and Msb4p proteins of Saccharomyces cerevisiae are members of the Ypt/Rab-specific GTPase-activating protein (GAP) family. They are essential to vesicular trafficking and involved in the regulation of exocytosis and in the organization of the actin cytoskeleton, but their exact biological roles have yet to be determined. The msb3 msb4 yeast double mutation causes growth inhibition in the presence of DMSO and/or caffeine, affects the organization of the actin cytoskeleton, produces a random budding pattern in diploid cells, and affects segregation of the nucleus. To find cell components that interact genetically with the products of the MSB3 and MSB4 genes, we screened a genomic library for multicopy suppressor genes restoring normal growth of the double mutant in the presence of DMSO and caffeine. Six genes were identified, and the extent to which each gene corrects specific growth defects of the msb3 msb4 mutant is described. The encoded suppressors were classified on the basis of functional features into four groups: vesicular transport proteins (Sec7p, Vps35p, and Uso1p), a protein involved in cell division (Sap155p), a molecular chaperon (Ssz1p), and a protein associated with the 25S proteasome (Cic1p).  相似文献   

19.
C Ungermann  W Wickner 《The EMBO journal》1998,17(12):3269-3276
The vacuole v-t-SNARE complex is disassembled by Sec17p/alpha-SNAP and Sec18p/NSF prior to vacuole docking and fusion. We now report a functional characterization of the vacuolar SNARE Vam7p, a SNAP-25 homolog. Although Vam7p has no hydrophobic domains, it is tightly associated with the vacuolar membrane. Vam7p is a constituent of the vacuole SNARE complex and is released from this complex by the Sec17p/Sec18p/ATP-mediated priming of the vacuoles. Even in the absence of the vacuolar v-SNARE Nyv1p, a subcomplex which includes Vam7p and the t-SNARE Vam3p is preserved. Vam7p is necessary for the stability of the vacuolar SNARE complex, since vacuoles from mutants deleted in VAM7 do not have a Vam3p-Nyv1p complex. Furthermore, Vam7p alone, in the absence of Nyv1p and Vam3p, cannot mediate fusion with wild-type vacuoles, whereas vacuoles with only Nyv1p or Vam3p alone can fuse with wild-type vacuoles in the absence of the other two SNAREs. Thus, Vam7p is important for the stable assembly and efficient function of the vacuolar SNARE complex and maintenance of the vacuolar morphology. This functional characterization of Vam7p suggests a general role for SNAP-25 homologs, not only on the plasma membrane but along the secretory pathway.  相似文献   

20.
The fusion of yeast vacuolar membranes depends on the disassembly of cis–soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes and the subsequent reassembly of new SNARE complexes in trans. The disassembly of cis-SNARE complexes by Sec17/Sec18p releases the soluble SNARE Vam7p from vacuolar membranes. Consequently, Vam7p needs to be recruited to the membrane at future sites of fusion to allow the formation of trans-SNARE complexes. The multisubunit tethering homotypic fusion and vacuole protein sorting (HOPS) complex, which is essential for the fusion of vacuolar membranes, was previously shown to have direct affinity for Vam7p. The functional significance of this interaction, however, has been unclear. Using a fully reconstituted in vitro fusion reaction, we now show that HOPS facilitates membrane fusion by recruiting Vam7p for fusion. In the presence of HOPS, unlike with other tethering agents, very low levels of added Vam7p suffice to induce vigorous fusion. This is a specific recruitment of Vam7p rather than an indirect stimulation of SNARE complex formation through tethering, as HOPS does not facilitate fusion with a low amount of a soluble form of another vacuolar SNARE, Vti1p. Our findings establish yet another function among the multiple tasks that HOPS performs to catalyze the fusion of yeast vacuoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号