首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platinum anticancer agents form bulky DNA adducts which are thought to exert their cytotoxic effect by blocking DNA replication. Translesion synthesis, one of the pathways of postreplication repair, is thought to account for some resistance to DNA damage and much of the mutagenicity of bulky DNA adducts in dividing cells. Oxaliplatin has been shown to be effective in cisplatin-resistant cell lines and less mutagenic than cisplatin in the Ames assay. We have shown that the eukaryotic DNA polymerases yeast pol zeta, human pol beta, and human pol gamma bypass oxaliplatin-GG adducts more efficiently than cisplatin-GG adducts. Human pol eta, a product of the XPV gene, has been shown to catalyze efficient translesion synthesis past cis, syn-cyclobutane pyrimidine dimers. In the present study we compared translesion synthesis past different Pt-GG adducts by human pol eta. Our data show that, similar to other eukaryotic DNA polymerases, pol eta bypasses oxaliplatin-GG adducts more efficiently than cisplatin-GG adducts. However, pol eta-catalyzed translesion replication past Pt-DNA adducts was more efficient and less accurate than that seen for previously tested polymerases. We show that the efficiency and fidelity of translesion replication past Pt-DNA adducts appear to be determined by both the structure of the adduct and the DNA polymerase active site.  相似文献   

2.
1,N(6)-Ethenodeoxyadenosine, a DNA adduct generated by exogenous and endogenous sources, severely blocks DNA synthesis and induces miscoding events in human cells. To probe the mechanism for in vivo translesion DNA synthesis across this adduct, in vitro primer extension studies were conducted using newly identified human DNA polymerases (pol) eta and kappa, which have been shown to catalyze translesion DNA synthesis past several DNA lesions. Steady-state kinetic analyses and analysis of translesion products have revealed that the synthesis is >100-fold more efficient with pol eta than with pol kappa and that both error-free and error-prone syntheses are observed with these enzymes. The miscoding events include both base substitution and frameshift mutations. These results suggest that both polymerases, particularly pol eta, may contribute to the translesion DNA synthesis events observed for 1,N(6)-ethenodeoxyadenosine in human cells.  相似文献   

3.
Translesion DNA synthesis is a mechanism of DNA damage tolerance, and mono-ubiquitination of proliferating cell nuclear antigen (PCNA) is considered to play a key role in regulating the switch from replicative to translesion DNA polymerases (pols). In this study, we analyzed effects of a replicative pol δ on PCNA mono-ubiquitination with the ubiquitin-conjugating enzyme and ligase UBE2A/HHR6A/RAD6A-RAD18. The results revealed that PCNA interacting with pol δ is a better target for ubiquitination, and PCNA mono-ubiquitination could be coupled with DNA replication. Consequently, we could reconstitute replication-coupled switching between pol δ and a translesion pol, pol η, on an ultraviolet-light-irradiated template. With this system, we obtained direct evidence that polymerase switching reactions are stimulated by mono-ubiquitination of PCNA, depending on a function of the ubiquitin binding zinc finger domain of pol η. This study provides a framework for detailed analyses of molecular mechanisms of human pol switching and regulation of translesion DNA synthesis.  相似文献   

4.
Despite nearly universal conservation through evolution, the precise function of the DinB/pol κ branch of the Y-family of DNA polymerases has remained unclear. Recent results suggest that DinB orthologs from all domains of life proficiently bypass replication blocking lesions that may be recalcitrant to DNA repair mechanisms. Like other translesion DNA polymerases, the error frequency of DinB and its orthologs is higher than the DNA polymerases that replicate the majority of the genome. However, recent results suggest that some Y-family polymerases, including DinB and pol κ, bypass certain types of DNA damage with greater proficiency than an undamaged template. Moreover, they do so relatively accurately. The ability to employ this mechanism to manage DNA damage may be especially important for types of DNA modification that elude repair mechanisms. For these lesions, translesion synthesis may represent a more important line of defense than for other types of DNA damage that are more easily dealt with by other more accurate mechanisms.  相似文献   

5.
The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta (pol eta), which is involved in the replication of damaged DNA. Pol eta catalyzes efficient and accurate translesion synthesis past cis-syn cyclobutane di-thymine lesions. Here we show that human pol eta can catalyze translesion synthesis past an abasic (AP) site analog, N-2-acetylaminofluorene (AAF)-modified guanine, and a cisplatin-induced intrastrand cross-link between two guanines. Pol eta preferentially incorporated dAMP and dGMP opposite AP, and dCMP opposite AAF-G and cisplatin-GG, but other nucleotides were also incorporated opposite these lesions. However, after incorporating an incorrect nucleotide opposite a lesion, pol eta could not continue chain elongation. In contrast, after incorporating the correct nucleotide opposite a lesion, pol eta could continue chain elongation, whereas pol alpha could not. Thus, the fidelity of translesion synthesis by human pol eta relies not only on the ability of this enzyme to incorporate the correct nucleotide opposite a lesion, but also on its ability to elongate only DNA chains that have a correctly incorporated nucleotide opposite a lesion.  相似文献   

6.
DNA polymerases beta (pol beta ) and eta (pol eta ) are the only two eukaryotic polymerases known to efficiently bypass cisplatin and oxaliplatin adducts in vitro. Frameshift errors are an important aspect of mutagenesis. We have compared the types of frameshifts that occur during translesion synthesis past cisplatin and oxaliplatin adducts in vitro by pol beta and pol eta on a template containing multiple runs of nucleotides flanking a single platinum-GG adduct. Translesion synthesis past platinum adducts by pol beta resulted in approximately 50% replication products containing single-base deletions. For both adducts the majority of -1 frameshifts occurred in a TTT sequence 3-5 bp upstream of the DNA lesion. For pol eta, all of the bypass products for both cisplatin and oxaliplatin adducts contained -1 frameshifts in the upstream TTT sequence and most of the products of replication on oxaliplatin-damaged templates had multiple replication errors, both frameshifts and misinsertions. In addition, on platinated templates both polymerases generated replication products 4-8 bp shorter than the full-length products. The majority of short cisplatin-induced products contained an internal deletion which included the adduct. In contrast, the majority of oxaliplatin-induced short products contained a 3' terminal deletion. The implications of these in vitro results for in vivo mutagenesis are discussed.  相似文献   

7.
The encounter of replication forks with DNA lesions may lead to fork arrest and/or the formation of single-stranded gaps. A major strategy to cope with these replication irregularities is translesion DNA replication (TLS), in which specialized error-prone DNA polymerases bypass the blocking lesions. Recent studies suggest that TLS across a particular DNA lesion may involve as many as four different TLS polymerases, acting in two-polymerase reactions in which insertion by a particular polymerase is followed by extension by another polymerase. Insertion determines the accuracy and mutagenic specificity of the TLS reaction, and is carried out by one of several polymerases such as polη, polκ or polι. In contrast, extension is carried out primarily by polζ. In cells from XPV patients, which are deficient in TLS across cyclobutane pyrimidine dimers (CPD) due to a deficiency in polη, TLS is carried out by at least two backup reactions each involving two polymerases: One reaction involves polκ and polζ, and the other polι and polζ. These mechanisms may also assist polη in normal cells under an excessive amount of UV lesions.  相似文献   

8.
DNA-dependent DNA polymerases are the main enzymes that catalyze DNA replication. Higher eukaryotic cells have 19 DNA polymerases with strikingly different properties [1]. Mitochondrial DNA polymerase γ of the A family and most of the nuclear enzymes of the B family are high-fidelity DNA polymerases that are involved not only in genomic DNA replication but also in DNA repair. Among the other 15 proteins, DNA polymerases belonging to the X and Y families have a special place. The majority of these enzymes are also involved in repair, including base excision repair and nonhomologous end joining. Some of them play a specific role in replication of damaged DNA templates. This process is referred to as translesion synthesis (TLS). DNA polymerases β and λ, which belong to the X structural family, are polyfunctional enzymes; their properties and functions are discussed.  相似文献   

9.
alpha-OH-PdG, an acrolein-derived deoxyguanosine adduct, inhibits DNA synthesis and miscodes significantly in human cells. To probe the cellular mechanism underlying the error-free and error-prone translesion DNA syntheses, in vitro primer extension experiments using purified DNA polymerases and site-specific alpha-OH-PdG were conducted. The results suggest the involvement of pol eta in the cellular error-prone translesion synthesis. Experiments with xeroderma pigmentosum variant cells, which lack pol eta, confirmed this hypothesis. The in vitro results also suggested the involvement of pol iota and/or REV1 in inserting correct dCMP opposite alpha-OH-PdG during error-free synthesis. However, none of translesion-specialized DNA polymerases catalyzed significant extension from a dC terminus when paired opposite alpha-OH-PdG. Thus, our results indicate the following. (i) Multiple DNA polymerases are involved in the bypass of alpha-OH-PdG in human cells. (ii) The accurate and inaccurate syntheses are catalyzed by different polymerases. (iii) A modification of the current eukaryotic bypass model is necessary to account for the accurate bypass synthesis in human cells.  相似文献   

10.
11.
Replicative DNA polymerases are blocked by damage in the template DNA. To get past this damage, the cell employs specialised translesion synthesis (TLS) polymerases, which have reduced stringency and are able to bypass different lesions. For example, DNA polymerase ? (pol?) is able to carry out TLS past UV-induced cyclobutane pyrimidine dimers. How does the cell bring about the switch from replicative to TLS polymerase? We have shown that, in human cells, when the replication machinery is blocked at DNA damage, PCNA, the sliding clamp required for DNA replication, is mono-ubiquitinated and that this modified form of PCNA has increased affinity for pol?. This provides a mechanism for the polymerase switch. In this Extra-View, we discuss the possible signals that might trigger ubiquitination of PCNA, whether PCNA becomes de-ubiquitinated after TLS has been accomplished and the role of the hREV1 protein in TLS. We point out some apparent differences between mechanisms in Saccharomyces cerevisiae and human cells.  相似文献   

12.
DNA polymerases beta and eta are among the few eukaryotic polymerases known to efficiently bypass cisplatin and oxaliplatin adducts in vitro. Our laboratory has previously established that both polymerases misincorporated dTTP with high frequency across from cisplatin- and oxaliplatin-GG adducts. This decrease in polymerase fidelity on platinum-damaged DNA could lead to in vivo mutations, if this base substitution were efficiently elongated. In this study, we performed a steady-state kinetic analysis of the steps required for fixation of dTTP misinsertion during translesion synthesis past cisplatin- and oxaliplatin-GG adducts by pol beta and pol eta. The efficiency of translesion synthesis by pol eta past Pt-GG adducts was very similar to that observed for this polymerase when the template contains thymine-thymine dimers. This finding suggested that pol eta could play a role in translesion synthesis past platinum-GG adducts in vivo. On the other hand, translesion synthesis past platinum-GG adducts by pol beta was much less efficient. Translesion synthesis by pol eta is likely to be predominantly error-free, since the probability of correct insertion and extension by pol eta was 1000-2000-fold greater than the probability of incorrect insertion and extension. Our results also indicated that for pol eta the frequency of misincorporation is the same across from the 3'G and the 5'G of the platinum-GG adducts for both cisplatin and oxaliplatin adducts. On the other hand, pol beta is more likely to misinsert at the 3'G of the adducts and misinsertion occurs at higher frequency for oxaliplatin-GG than for cisplatin-GG adducts.  相似文献   

13.
DNA damage is generated continually inside cells. In order to be able to replicate past damaged bases (translesion synthesis), the cell employs a series of specialised DNA polymerases, which singly or in combination, are able to bypass many different types of damage. The polymerases have similar structural domains to classical polymerases, but they have a more open structure to allow altered bases to fit into their active sites. Although not required for replication of undamaged DNA, some at least of these polymerases are located in replication factories. Emerging evidence suggests that the polymerase switch from replicative to translesion polymerases might be mediated by post-translational modifications.  相似文献   

14.
DNA polymerase III (DNA pol III) efficiently replicates the Escherichia coli genome, but it cannot bypass DNA damage. Instead, translesion synthesis (TLS) DNA polymerases are employed to replicate past damaged DNA; however, the exchange of replicative for TLS polymerases is not understood. The umuD gene products, which are up-regulated during the SOS response, were previously shown to bind to the α, β and ε subunits of DNA pol III. Full-length UmuD inhibits DNA replication and prevents mutagenic TLS, while the cleaved form UmuD' facilitates mutagenesis. We show that α possesses two UmuD binding sites: at the N-terminus (residues 1-280) and the C-terminus (residues 956-975). The C-terminal site favors UmuD over UmuD'. We also find that UmuD, but not UmuD', disrupts the α-β complex. We propose that the interaction between α and UmuD contributes to the transition between replicative and TLS polymerases by removing α from the β clamp.  相似文献   

15.
DNA damage is generated continually inside cells. In order to be able to replicate past damaged bases (translesion synthesis), the cell employs a series of specialised DNA polymerases, which singly or in combination, are able to bypass many different types of damage. The polymerases have similar structural domains to classical polymerases, but they have a more open structure to allow altered bases to fit into their active sites. Although not required for replication of undamaged DNA, some at least of these polymerases are located in replication factories. Emerging evidence suggests that the polymerase switch from replicative to translesion polymerases might be mediated by post-translational modifications.  相似文献   

16.
DNA polymerase η (polη) belongs to the Y-family of DNA polymerases and facilitates translesion synthesis past UV damage. We show that, after UV irradiation, polη becomes phosphorylated at Ser601 by the ataxia-telangiectasia mutated and Rad3-related (ATR) kinase. DNA damage-induced phosphorylation of polη depends on its physical interaction with Rad18 but is independent of PCNA monoubiquitination. It requires the ubiquitin-binding domain of polη but not its PCNA-interacting motif. ATR-dependent phosphorylation of polη is necessary to restore normal survival and postreplication repair after ultraviolet irradiation in xeroderma pigmentosum variant fibroblasts, and is involved in the checkpoint response to UV damage. Taken together, our results provide evidence for a link between DNA damage-induced checkpoint activation and translesion synthesis in mammalian cells.  相似文献   

17.
Shen X  Woodgate R  Goodman MF 《DNA Repair》2005,4(12):665-1373
Escherichia coli DNA polymerase IV and V (pol IV and pol V) are error-prone DNA polymerases that are induced as part of the SOS regulon in response to DNA damage. Both are members of the Y-family of DNA polymerases. Their principal biological roles appear to involve translesion synthesis (TLS) and the generation of mutational diversity to cope with stress. Although neither enzyme is known to be involved in base excision repair (BER), we have nevertheless observed apurinic/apyrimidinic 5'-deoxyribose phosphate (AP/5'-dRP) lyase activities intrinsic to each polymerase. Pols IV and V catalyze cleavage of the phosphodiester backbone at the 3'-side of an apurinic/apyrimidinic (AP) site as well as the removal of a 5'-deoxyribose phosphate (dRP) at a preincised AP site. The specific activities of the two error-prone polymerase-associated lyases are approximately 80-fold less than the associated lyase activity of human DNA polymerase beta, which is a key enzyme used in short patch BER. Pol IV forms a covalent Schiff's base intermediate with substrate DNA that is trapped by sodium borohydride, as proscribed by a beta-elimination mechanism. In contrast, a NaBH(4) trapped intermediate is not observed for pol V, even though the lyase specific activity of pol V is slightly higher than that of pol IV. Incubation of pol V (UmuD'(2)C) with a molar excess of UmuD drives an exchange of subunits to form UmuD'D+insoluble UmuC causing inactivation of polymerase and lyase activities. The concomitant loss of both activities is strong evidence that pol V contains a bona fide lyase activity.  相似文献   

18.
Repair of interstrand DNA cross-links (ICLs) in Escherichia coli can occur through a combination of nucleotide excision repair (NER) and homologous recombination. However, an alternative mechanism has been proposed in which repair is initiated by NER followed by translesion DNA synthesis (TLS) and completed through another round of NER. Using site-specifically modified oligodeoxynucleotides that serve as a model for potential repair intermediates following incision by E. coli NER proteins, the ability of E. coli DNA polymerases (pol) II and IV to catalyze TLS past N(2)-N(2)-guanine ICLs was determined. No biochemical evidence was found suggesting that pol II could bypass these lesions. In contrast, pol IV could catalyze TLS when the nucleotides that are 5' to the cross-link were removed. The efficiency of TLS was further increased when the nucleotides 3' to the cross-linked site were also removed. The correct nucleotide, C, was preferentially incorporated opposite the lesion. When E. coli cells were transformed with a vector carrying a site-specific N(2)-N(2)-guanine ICL, the transformation efficiency of a pol II-deficient strain was indistinguishable from that of the wild type. However, the ability to replicate the modified vector DNA was nearly abolished in a pol IV-deficient strain. These data strongly suggest that pol IV is responsible for TLS past N(2)-N(2)-guanine ICLs.  相似文献   

19.
20.
Xeroderma pigmentosum variant and error-prone DNA polymerases   总被引:4,自引:0,他引:4  
Kannouche P  Stary A 《Biochimie》2003,85(11):1123-1132
Replicative DNA synthesis is a faithful event which requires undamaged DNA and high fidelity DNA polymerases. If unrepaired damage remains in the template DNA during replication, specialised low fidelity DNA polymerases synthesises DNA past lesions (translesion synthesis, TLS). Current evidence suggests that the polymerase switch from replicative to translesion polymerases might be mediated by post-translational modifications involving ubiquitination processes. One of these TLS polymerases, polymerase eta carries out TLS past UV photoproducts and is deficient in the variant form of xeroderma pigmentosum (XP-V). The dramatic proneness to skin cancer of XP-V individuals highlights the importance of this DNA polymerase in cancer avoidance. The UV hypermutability of XP-V cells suggests that, in the absence of a functional poleta, UV-induced lesions are bypassed by inaccurate DNA polymerase(s) which remain to be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号