首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of reduced, natural ambient, and enhanced UV-B radiation (UVBR) on photosynthesis and DNA damage in the Antarctic terrestrial alga Prasiola crispa ssp. antarctica (Kützing) Knebel was investigated in two field experiments. Samples of P. crispa were collected underneath snow cover and exposed outside to reduced and natural UVBR in the austral spring. In a second experiment at the end of the austral summer, samples were exposed to ambient and enhanced UVBR. PSII efficiency, net photosynthetic rate (NP), dark respiration rate (DR), UV-absorbing pigments, and cyclobutyl pyrimidine dimer (CPD) formation were measured during the experiments. In October 1998, a spring midday maximum of 2.0 W·m 2 of UVBR did not significantly affect effective quantum yield (ΔF/Fm′), and a reduction in the ratio of variable to maximal fluorescence (Fv/Fm) in the late afternoon was transient. Exposure to natural ambient UVBR in October increased CPD values significantly. Midday maxima of UVBR during the experiments in October and January were comparable, but Setlow-DNA-weighted UVBR was more than 50% lower in January than in October. In January, 0.5 W·m 2 additional UVBR during 10 h did not have a negative effect on ΔF/Fm′. The reduction in Fv/Fm was not significant. NP and DR were not affected by supplementation of UVBR. Although photosynthetic activity remained largely unaffected by UVBR treatment, DNA damage was shown to be a sensitive parameter to monitor UVBR effects. Supplementation of additional UVBR did significantly enhance the amounts of CPD in exposed samples and repair took place overnight. It is concluded that PSII and whole-chain photosynthesis of P. crispa is well adapted to ambient and enhanced levels of UVBR but that CPD formation is more sensitive to UVBR than to photosynthesis.  相似文献   

2.
The photophysiology of turf algal communities was studied in situ on a temperate reef off the coast of South Australia. Algal communities were grown on artificial substrate at depths of 2, 4, and 10 m. To investigate the response of the algal communities to changing light environments in both the short and long term, reciprocal transplantation experiments were conducted among these depths on a seasonal basis. The extent of photoinhibition was assessed every 3 h for the first 2 days following transplantation and then on a daily basis for 16 days after transplantation. Photosynthetic acclimation was assessed using photosynthesis–light curves obtained from transplanted and non‐transplanted turfs after the acclimation period. Transplanted turfs responded very quickly to the light shift. Algae acclimated to low light (10 m depth) were highly susceptible to photoinhibition and photodamage, having greater decreases in maximum and effective quantum yields than turfs from shallower depths. Yield recovery and acclimation usually occurred very rapidly in algae from all depths (3–5 days), but were faster in spring and summer compared with winter. Changes in photosynthetic capacity (across seasons, depths, and after transplantation to a different depth) were accompanied by changes in respiration, so that the ratio of net to gross photosynthetic capacity (Pmnet : Pmgross) remained high and constant over the whole range of light levels. We discuss the possible acclimation strategies of turfs, taking into account the balance between photoacclimation, production, and growth strategy.  相似文献   

3.
During a survey from January to March 1998, the occurrence of UV-B radiation (UVBR)- induced DNA damage in Antarctic marine phytoplankton and bacterioplankton was investigated. Sampling was done in Ryder Bay, off the British base Rothera Station, 67°S, 68°W (British Antarctic Survey). Samples were taken regularly during the survey period at fixed depths, after which DNA damage was measured in various plankton size fractions (>10, 2–10, and 0.2–2 μm). Incident solar radiation was measured using spectroradiometry, whereas attenuation of biologically effective UVBR was studied using a DNA dosimeter. A diatom bloom was found in the bay during the research period, judging from microscopic observations and HPLC analyses of taxon-specific pigments. The high phytoplankton biomass likely caused strong attenuation of DNA effective UVBR (Kbd-eff). Kbd-eff values ranged from 0.83·m 1 at the peak of the bloom to 0.47·m 1 at the end of the season. UVBR-mediated DNA damage, as measured by cyclobutane pyrimidine dimer (CPD) abundance, was detected in all plankton size fractions. Highest levels were found in the smallest size fraction, mainly consisting of heterotrophic bacteria. Clear CPD depth profiles were found during mid-summer (January, beginning of February) with surface levels exceeding 100 CPDs per million nucleotides in the bacterioplankton fraction. At that time, melting of the continuously present shelf ice caused strong salinity gradients in the upper meters, thereby stimulating water column stabilization. At the end of February and beginning of March, this phenomenon was less pronounced or absent. At that time, DNA damage was homogeneously distributed over the first 10 m, ranging between 20 and 30 CPDs per million nucleotides for the smallest size fraction.  相似文献   

4.
DNA: ATP and carbon: DNA (C:DNA) ratios were measured in a total of 14 species of marine microalgae and bacteria. Comparison of several DNA assay methods with results obtained with cultures uniformly labeled with 33P indicated that by far the most accurate results were obtained using diaminobenzoic acid (DABA) or diphen-ylamine, with DABA having the highest precision. Both the Hoechst and DAPI methods seriously underestimated DNA concentrations in algal cultures. Average DNA: ATP ratios in the algal and bacterial cultures were I7 and 34 by weight, respectively, with almost all values lying in the range of 10–40. DNA: ATP ratios in the microalgae showed no correlation with growth conditions but varied by about a factor of 3 among species. C:DNA ratios for individual species of microalgae and bacteria ranged from 21 to 155 by weight and averaged 50 for the microalgae and bacteria taken together. Growth rates of microalgal species grown in cyclostats were estimated to within 8% of dilution rates when calculated from the uptake of 3H-adenine and the DNA: ATP ratio of the species. Use of the 3H-adenine method for estimating microalgal growth rates in the field may thus be a useful tool for investigating the physiology of microalgae in nature.  相似文献   

5.
Experiments on a marine diatom, Thalassiosira pseudonana (Hustedt) clone 3H, demonstrate that under moderate photon flux densities (75 μmol quanta·m?2·s?1) of visible light the inhibition of photosynthesis by supplemental ultraviolet (UV) radiation (UV-B: 280–320 nm) is well described as a hyperbolic function of UV-B irradiance for time scales of 0.5–4 h. Results are consistent with predictions of a recently developed model of photosynthesis under the influence of UV and visible irradiance. Although net destruction of chlorophyll occurs during a 4-h exposure to UV-B, and the effect is a function of exposure, the principal effect of UV-B is a decrease in chlorophyll-specific photosynthetic rate. The dependence of photoinhibition on dosage rate, rather than cumulative dose, and the hyperbolic shape of the relationship are consistent with net photoinhibition being an equilibrium between damage and repair. The ratio of damage to repair is estimated by a mathematical analysis of the inhibition of photosynthesis during exposures to UV-B. A nitrate-limited culture was much more sensitive to UV-B than were the nutrient-replete cultures, but the kinetics of photoinhibition were similar. The analysis suggests that the nutrient-limited culture was more sensitive than the nutrient-replete cultures because repair or turnover of critical proteins associated with photosynthesis is inhibited. An inhibitor of chloroplast protein synthesis was used to suppress repair processes. Photoinhibition by UV-B was enhanced, and inhibition was a function of cumulative dose, as would be expected if damage were not countered by repair. The fundamental importance of repair processes should be considered in the design of field experiments and models of UV-B effects in the environment, especially in the context of vertical mixing. Repair processes must also be considered whenever biological weighting functions are developed.  相似文献   

6.
Growth and different phases in the life histories of Bos-trychia tenella (Vohl.) J. Ag., Caloglossa leprieurii (Mont.) J. Ag., and Catenella impudica (Mont.) J. Ag. were estimated for 23 months from January 1986 to December 1987 in the Gautami Godavari estuary of lndia. Seasonal data on hydrographical conditions, biomass, and plant length were collected from three stations in this estuary. Biomass was minimum in August and September and maximum in January and February, as was frond length of tetrasporic and vegetative plants. Temperatures of 24°–27°C and salinities of 5–20 ppt coincided with optimal growth for all three algae. In all three species, tetrasporophytes were present in all months of the year without any seasonal periodicity, and nearly 50% of the plants were tetrasporophytes. The gametophytes of B. tenella and C. leprieurii and cystocarpic plants of C. impudica occurred from October to May, with greatest abundance in January. The abundance of spermatangial and cystocarpic plants in the populations of B. tenella and C. leprieurii ranged from 3 to 15%. Spermatangial plants of Catenella impudica could not be identified, and the abundance of cystocarpic plants was very low.  相似文献   

7.
采用室内暴露试验方法, 研究了不同浓度Cu2+(0.01、0.10、0.25mg/L)、Pb2+(0.05、0.50、0.75mg/L)单因子染毒以及Cu2++Pb2+(0.01 mg/L+0.05mg/L、0.10 mg/L+0.50 mg/L、0.25 mg/L+0.75 mg/L)联合染毒对泥鳅卵细胞DNA的损伤效应, 并以SCGE技术进行检测。结果显示, Cu2+与Pb2+单因子染毒对泥鳅卵细胞DNA的损伤具有较为显著的剂量-效应与时间-效应关系(P0.05)。Cu2++Pb2+联合染毒, 在溶液暴露的0-5d表现为剂量-效应与时间-效应关系(P0.05); Cu2++Pb2+暴露5-10d 则表现出拮抗作用。研究结果显示, Cu2+、Pb2+ 单因子及联合染毒均造成泥鳅卵细胞DNA损伤, 具有基因毒性效应。    相似文献   

8.
Diminishing levels of atmospheric ozone are increasing UV stress on intertidal algae. Early developmental stages tend to be more susceptible to environmental stresses; however, little research has examined how these stages are protected from UV radiation (UVR). Many brown algae contain high levels of phlorotannins, which are thought to function in screening UVR. In this study, we tested the effects of ambient levels of UV‐B and UV‐A on growth and phlorotannin production in 1‐ to 2‐cm juvenile and microscopic postsettlement embryos of the intertidal alga Fucus gardneri Silva. Algae were grown in four light treatments: 1) ambient light; 2) under cellulose acetate, which lowered light quantity but did not affect light quality; 3) under MylarTM, which filtered UV‐B; and 4) under PlexiglasTM, which blocked UV‐A and UV‐B. Over a 3‐week period, UV‐B inhibited and UV‐A enhanced the growth of F. gardneri embryos, whereas the growth of juveniles was not affected. Phlorotannin concentrations of both embryos and juveniles did not differ in any of the light treatments. Our results suggest that embryos of F. gardneri are susceptible to UV light but develop a tolerance to it as they mature. This tolerance may result from increases in phlorotannin concentrations that occur during maturation; however, phlorotannin production in embryonic or juvenile stages is either not induced by UV light or takes more than 3 weeks to occur.  相似文献   

9.
Field observations and results from previous laboratory studies on the effects of turbulence on dinoflagellates have led to a paradigm in phytoplankton ecology that dinoflagellate growth is negatively affected by turbulence. To test the paradigm, 10 species of autotrophic dinoflagellates were exposed to quantified three‐dimensional turbulence generated by vertically oscillating cylindrical rods in 20‐L rectangular culture tanks. Turbulence was quantified in the tanks (as the turbulent energy dissipation rate, ε ) using an acoustic Doppler velocimeter. Dinoflagellates were exposed to two turbulence treatments: high turbulence ( ε ~ 10 ? 4 m2·s ? 3), low turbulence ( ε ~ 10 ? 8 m2·s ? 3), and an unstirred control. In accord with the paradigm, Ceratium fusus (Ehrenberg) Dujardin had lower net growth rates in high turbulence, whereas Pyrocystis noctiluca Murray ex Haeckel and Ceratium tripos (O. F. Müller) Nitzsch did not increase their numbers in high turbulence. However, Alexandrium tamarense (Lebour) Balech, Pyrocystis fusiformis Wyville‐Thomson ex Murray, Alexandrium catenella (Whedon and Kofoid) Balech, and a Gyrodinium sp. Kofoid and Swezy were apparently unaffected by turbulence and had the same net growth rates across all turbulence treatments. Contradicting the paradigm, Lingulodinium polyedrum (Stein) Dodge (= Gonyaulax polyedra), Gymnodinium catenatum Graham, and Alexandrium fundyense Balech had increased net growth rates in high turbulence treatments. Cross‐sectional area (CSA) varied little across turbulence treatments for 8 of 10 dinoflagellate species tested, CSA in C. fusus increased when net growth rate decreased in high turbulence, and, conversely, CSA decreased in L. polyedrum when net growth rate increased in high turbulence.  相似文献   

10.
Fouling plates (Plexiglas squares and concrete blocks) were bolted in a horizontal position to racks on the ocean floor at a depth of 12 m. Some of these were periodically taken from the sea, subjected to nondestructive microscopic survey in the laboratory, and then replaced. Others were: a) left undisturbed as controls; b) variously caged to exclude larger predatory animals; or, c) had sediment removed from them at intervals. Populations developing on the periodically surveyed plates were similar to those on undisturbed plates. Populations on undisturbed plates were significantly different from those on partially caged plates. The exclusion of large predators by complete caging resulted in highly significantly different communities from those on partially caged plates. Completely caged Communities were composed mainly of worms, barnacles and bryozoans. Summer-installed plates supported significantly different populations at the end of the experimental period (12 mo) from winter-installed plates. Plant growth rates were slow, not exceeding 2 cm/mo, and the mortality rates were often high. A few species had high rates of recruitment and survival each month. Most had high recruitment only in the most favorable growth periods and high loss rates. Physical conditions on the sea floor were measured. The methods developed during this study make it possible to quantitatively describe the growth and reproduction of populations of benthic marine algae in the sea.  相似文献   

11.
研究通过对岩原鲤仔鱼在饥饿和再投喂条件下其生存、生长率、RNA/DNA和RNA/蛋白质比率的测定,评估了仔鱼对饥饿的耐受能力和恢复能力。在(19.5±0.5)℃水温下,将岀膜后第16天的岩原鲤仔鱼随机分成6个组:1个持续投饲对照组,实验组分别禁食1、2、3、4、5d后再投喂,实验共进行10d。每天分别从各组取9尾鱼测定体重、体长、RNA、DNA、蛋白质含量。实验结果显示,饥饿处理组仔鱼存活率和以上各项生长指标均随饥饿时间的增加而下降,在恢复投喂后均表现不同程度的补偿生长,其中饥饿1、2、3d的仔鱼在恢复投喂后显示出完全补偿生长,几乎弥补了饥饿所产生的影响,平均终体重与对照组比较无显著差异。饥饿4、5d的仔鱼显示部分补偿生长,恢复投喂只少量减轻了饥饿的影响,平均终体重与对照组相比存在显著差异。饥饿1、2、3d的仔鱼和4、5d的仔鱼在恢复投喂后分别需要1—2d和4d时间才能达到与对照组无显著差异水平。仔鱼生长率变动范围从0.59%到8.00%WW/day,仔鱼RNA/DNA比率、RNA/蛋白质比率与生长率的回归方程为:GR=3.63RNA/DNA 1.74(R2=0.80)和GR=120.14RNA/Protein 2.33(R2=0.31),两种比率均与生长率呈显著线性相关,RNA/DNA比率对生长变化的拟合度更好。结果表明,仔鱼阶段食物缺乏很可能是影响岩原鲤仔鱼存活、生长的主要因素。RNA/DNA更适合作为评定岩原鲤仔鱼营养条件和生长的指标。  相似文献   

12.
The interactive effects of P starvation and exposure to UV radiation (UVR) on rates of damage ( k ) and repair ( r ), modeled from exposure response curves (ERCs), in the chlorophyte microalga Dunaliella tertiolecta Butcher were investigated. When nutrient‐replete cells were exposed to the UVR during growth, k and r both increased by approximately 62% and 100%, respectively. However, when cells were starved of phosphorus, k increased by a similar amount as observed in replete cells, but r decreased by about 70%, explaining the increased susceptibility of cells to UVR‐induced inhibition of photosynthesis under P starvation. Although not specifically investigated in this study, it is argued that the decreased repair capacity under P starvation is due to a decline in nucleotides such as ATP and GTP, which are necessary for protein repair.  相似文献   

13.
Trichodesmium N2 fixation has been studied for decades in situ and, recently, in controlled laboratory conditions; yet N2‐fixation rate estimates still vary widely. This variance has made it difficult to accurately estimate the input of new nitrogen (N) by Trichodesmium to the oligotrophic gyres of the world ocean. Field and culture studies demonstrate that trace metal limitation, phosphate availability, the preferential uptake of combined N, light intensity, and temperature may all affect N2 fixation, but the interactions between growth rate and N2 fixation have not been well characterized in this marine diazotroph. To determine the effects of growth rate on N2 fixation, we established phosphorus (P)–limited continuous cultures of Trichodesmium, which we maintained at nine steady‐state growth rates ranging from 0.27 to 0.67 d?1. As growth rate increased, biomass (measured as particulate N) decreased, and N2‐fixation rate increased linearly. The carbon to nitrogen ratio (C:N) varied from 5.5 to 6.2, with a mean of 5.8 ± 0.2 (mean ± SD, N = 9), and decreased significantly with growth rate. The N:P ratio varied from 23.4 to 45.9, with a mean of 30.5 ± 6.6 (mean ± SD, N = 9), and remained relatively constant over the range of growth rates studied. Relative constancy of C:N:P ratios suggests a tight coupling between the uptake of these three macronutrients and steady‐state growth across the range of growth rates. Our work demonstrates that growth rate must be considered when planning studies of the effects of environmental factors on N2 fixation and when modeling the impact of Trichodesmium as a source of new N to oligotrophic regions of the ocean.  相似文献   

14.
The Bothnian Sea in the northerly part of the Baltic Sea is a geologically recent brackish‐water environment, and rapid speciation is occurring in the algal community of the Bothnian Sea. We measured low‐temperature fluorescence emission spectra from the Bothnian Sea and the Norwegian Sea ecotypes of Fucus vesiculosus L., a marine macroalga widespread in the Bothnian Sea. Powdered, frozen thallus was used to obtain undistorted emission spectra. The spectra were compared with spectra measured from the newly identified species Fucus radicans Bergström et L. Kautsky, which is a close relative of F. vesiculosus and endemic to the Bothnian Sea. The spectrum of variable fluorescence was used to identify fluorescence peaks originating in PSI and PSII in this chl c–containing alga. The spectra revealed much higher PSII emission, compared to PSI emission, in the Bothnian Sea ecotype of F. vesiculosus than in F. radicans or in the Norwegian Sea ecotype of F. vesiculosus. The results suggest that more light‐harvesting chl a/c proteins serve PSII in the Bothnian Sea ecotype of F. vesiculosus than in the two other algal strains. Treatment of the Bothnian Sea ecotype of F. vesiculosus in high salinity (10, 20, and 35 practical salinity units) for 1 week did not lead to spectral changes, indicating that the measured features of the Bothnian Sea F. vesiculosus are stable and not simply a direct result of exposure to low salinity.  相似文献   

15.
DNA是生命活动中最重要的遗传物质,保持其分子结构的完整性对于细胞至关重要,因此研究DNA损伤修复是生命科学的重要课题之一。基因组比较简单,易于操作的单细胞真核生物酵母遂成为研究DNA损伤修复的重要材料。对紫外线或电离辐射敏感的酵母突变株称为rad突变株。酵母细胞的基因组中有近30个遗传位点与辐射抗性有关。根据单突变和双突变的敏感特征所得出的上位关系可将其分为3个上位显性组:RAD3组,该组成员参与核苷酸的切除修复,其突变株对紫外线敏感;  相似文献   

16.
Solar ultraviolet radiation (UVR, 280–400 nm) is known to affect macroalgal physiology negatively, while nutrient availability may affect UV‐absorbing compounds (UVACs) and sensitivity to UVR. However, little is known about the interactive effects of UVR and nitrate availability on macroalgal growth and photosynthesis. We investigated the growth and photosynthesis of the red alga Gracilaria lemaneiformis (Bory) Grev. at different levels of nitrate (natural or enriched nitrate levels of 41 or 300 and 600 μM) under different solar radiation treatments with or without UVR. Nitrate‐enrichment enhanced the growth, resulted in higher concentrations of UVACs, and led to negligible photoinhibition of photosynthesis even at noon in the presence of UVR. Net photosynthesis during the noon period was severely inhibited by both ultraviolet‐A radiation (UVA) and ultraviolet‐B radiation (UVB) in the thalli grown in seawater without enriched nitrate. The absorptivity of UVACs changed in response to changes in the PAR dose when the thalli were shifted back and forth from solar radiation to indoor low light, and exposure to UVR significantly induced the synthesis of UVACs. The thalli exposed to PAR alone exhibited higher growth rates than those that received PAR + UVA or PAR + UVA + UVB at the ambient or enriched nitrate concentrations. UVR inhibited growth approximately five times as much as it inhibited photosynthesis within a range of 60–120 μg UVACs · g?1 (fwt) when the thalli were grown under nitrate‐enriched conditions. Such differential inhibition implies that other metabolic processes are more sensitive to solar UVR than photosynthesis.  相似文献   

17.
Male gain curves describe the relationship between allocation to sperm production and male reproductive success and are central to models of sex allocation in hermaphrodites. Sperm competition is expected to result in more linear gains and select for increased allocation. We hypothesized that high sperm production in passively mating systems may also be the result of selection to enhance the ability to fertilize distant ova. Consequently, we explored the effect of distance on male gain curves in a free‐spawning colonial ascidian. The performance of focal males that varied in sperm production was assayed at three distances via microsatellite markers. An advection‐diffusion model was used to estimate sperm concentration gradients, to predict male reproductive gain integrated across multiple downstream females, and explore effects of hydrodynamic conditions. As distance increased, male reproductive success decreased and empirical gain curves became increasingly linear. Our model predicted that the expected net gain curve is relatively insensitive to variation in flow regime and will saturate much more slowly than if only a single, nearby distance is considered. Thus, high levels of sperm production may enhance fitness both in competitive situations and with increasing fertilization distance, highlighting the need to consider distance effects when evaluating gain curves.  相似文献   

18.
The short‐term and long‐term effects of elevated CO2 on photosynthesis and respiration were examined in cultures of the marine brown macroalga Hizikia fusiformis (Harv.) Okamura grown under ambient (375 μL · L?1) and elevated (700 μL · L?1) CO2 concentrations and at low and high N availability. Short‐term exposure to CO2 enrichment stimulated photosynthesis, and this stimulation was maintained with prolonged growth at elevated CO2, regardless of the N levels in culture, indicating no down‐regulation of photosynthesis with prolonged growth at elevated CO2. However, the photosynthetic rate of low‐N‐grown H. fusiformis was more responsive to CO2 enrichment than that of high‐N‐grown algae. Elevation of CO2 concentration increased the value of K1/2(Ci) (the half‐saturation constant) for photosynthesis, whereas high N supply lowered it. Neither short‐term nor long‐term CO2 enrichment had inhibitory effects on respiration rate, irrespective of the N supply, under which the algae were grown. Under high‐N growth, the Q10 value of respiration was higher in the elevated‐CO2‐grown algae than the ambient‐CO2‐grown algae. Either short‐ or long‐term exposure to CO2 enrichment decreased respiration as a proportion of gross photosynthesis (Pg) in low‐N‐grown H. fusiformis. It was proposed that in a future world of higher atmospheric CO2 concentration and simultaneous coastal eutrophication, the respiratory carbon flux would be more sensitive to changing temperature.  相似文献   

19.
To study the effect of different radiation conditions on sporogenesis of Laminaria digitata (Huds.) J. V. Lamour., excised disks were induced to form sporangia under PAR (P), PAR + ultraviolet‐A (UVA) (PA), and PAR + UVA + ultraviolet‐B (UVB) (PAB) conditions in the laboratory. Vitality of meiospores, released from sori induced under different radiation conditions in the laboratory and from sori of wild sporophytes acclimated to in situ solar radiation in the presence and absence of ultraviolet radiation (UVR), was measured in terms of their germination capacity. Sorus induction in disks of laboratory‐grown sporophytes was not hampered under light supplemented with UVR, and sorus area was not significantly different among P, PA, and PAB. Vitality and germination rate of meiospores released from sori induced under different radiation treatments was comparable. Likewise, screening of UVR of the natural solar radiation did not promote higher germination rates of meiospores released from wild sporophytes. Germination rates were, however, higher in meiospores released from laboratory‐induced sori compared to sori of wild sporophytes. Higher DNA damage (formation of cyclobutane pyrimidine dimers, CPDs) was observed in laboratory‐grown nonsorus compared to sorus tissue, while CPDs were nondetectable in both sorus and nonsorus tissue of wild sporophytes. To explain the apparent protection of developing meiospores and the unexpected UV resistance of soral tissue, concurrent anatomical investigations of sporogenic tissue were performed. We observed the previously unreported existence of two types of sterile paraphysis cells. One type of paraphysis cells, the most frequent type, contained several red‐fluorescing plastids. The other type, less frequently occurring, was completely filled with substances emitting blue fluorescence under violet excitation, presumably brown algal phenolic compounds (phlorotannins). Cells of this type were irregularly scattered within the sorus and did not contain red‐fluorescing plastids. Meiospore‐containing sporangia were positioned embedded between both types of paraphysis cells. In vegetative tissue, blue autofluorescence was observed only in injured parts of the blade. Results of our study suggest that the sorus structure with phlorotannins localized in the specialized paraphysis cells may be able to screen harmful UVR and protect UV‐sensitive meiospores inside the sporangia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号