首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Infection of susceptible mice (SJL) with Theiler's murine encephalitis virus (TMEV) causes a biphasic disease characterized by gray matter inflammation followed by late chronic demyelination. The role of NK cells was studied in this model by using susceptible (SJL) or resistant (C57BL/10) mice. CNS TMEV titer were higher in SJL compared with C57BL/10 mice, correlating with a 50% lower NK cell activity in the SJL than in the C57BL/10 mice. When resistant (C57BL/10) mice were depleted of NK cells using either mAb NK1.1 or polyclonal anti-asialo-GM1, TMEV induced the development of diffuse encephalitis and meningitis early in the postinfection period (days 6 to 11). However, the second phase of TMEV-induced CNS disease (demyelination) was observed only in resistant C57BL/10 mice treated with anti-asialo-GM1. Experiments with beige/beige mice of C57BL/10 background showed a mild degree of gray matter inflammation but no demyelination. In conclusion, NK cells are critical effectors in protecting against TMEV-induced gray matter disease, whereas a different population of either NK1.1- NK cells, or other activated lymphocytes may be critical in resistance/susceptibility to demyelination.  相似文献   

2.
Following intracerebral inoculation of Theiler's murine encephalomyelitis virus (TMEV), susceptible mouse strains develop a chronic demyelinating disease characterized by mononuclear cell-rich infiltrates in the central nervous system. Current evidence strongly supports an immune-mediated basis for myelin breakdown, with an effector role proposed for TMEV-specific, major histocompatibility class II-restricted delayed-type hypersensitivity, which temporally correlates with disease onset and remains chronically elevated in susceptible mice. This study examined the fine specificity of class II-restricted T cell responses in TMEV-infected mice to better define the relevant virus-encoded T cell determinant(s) responsible for triggering the demyelinating process, and to determine if class II-restricted neuroantigen-specific autoimmune responses could be detected in mice with TMEV-induced demyelination. The data clearly show that T cell responses in TMEV-infected mice are directed against determinants shared by closely related TMEV strains and are cross-reactive with related picornaviruses, such as encephalomyocarditis virus. In contrast, class II-restricted autoimmune responses against syngeneic mouse spinal cord homogenate and the two major protein components of myelin, myelin basic protein and proteolipid protein, are not demonstrable in susceptible SJL/J mice undergoing chronic TMEV-induced demyelinating disease, but are readily seen in SJL/J mice displaying chronic, relapsing experimental allergic encephalomyelitis. Cross-reactivity (or lack thereof), as determined by functional T cell analyses, was found to correlate with the extent of exact amino acid homology between the TMEV capsid proteins, the two neuroantigens, and related picornaviruses. The data thus do not support a major role for autoimmune responses against myelin proteins in TMEV-induced demyelinating disease, but are consistent with our previously proposed hypothesis that TMEV-specific T cell responses constitute a major effector mechanism of myelin breakdown.  相似文献   

3.
The pathological mechanisms that cause central nervous system (CNS) dysfunction in most neurological diseases are not well established. Theiler's murine encephalomyelitis virus (TMEV) is known to interact with cells of the CNS and its intracerebral inoculation to susceptible mice strains causes neurological disorders resembling multiple sclerosis (MS). In this study, we reported that primary astrocyte cultures from SJL/J susceptible mice when infected with TMEV released important amounts of nitrites (NO2-) to the culture medium, as measured in the supernatants 24 hours after infection. In addition, we observed an increment in the production of tumour necrosis factor alpha (TNF-alpha) by susceptible SJL/J strain derived astrocytes infected with TMEV. The treatment with the thiolic antioxidant N-acetyl-cysteine partially suppressed the virus-stimulated production of nitric oxide and TNF-alpha, in a dose response fashion. These results indicate that during viral infection astrocytes are an important cellular source of nitric oxide and TNF-alpha, substances which play important roles during CNS inflammatory events. The effects of the antioxidant N-acetyl-cysteine, modulating the production of the above compounds by TMEV-infected astrocytes may be a significant factor in preventing CNS demyelination.  相似文献   

4.
The murine encephalomyelitis virus of Theiler (TMEV) induces demyelination in susceptible strains of mice by a CD4(+) Th1 T cell mediated immunopathologic process. We focused on the production of one chemokine, the macrophage inflammatory protein-2 (MIP-2 or CXCL2), by cultured mouse astrocytes infected with the BeAn strain of TMEV. Analysis of a murine genome DNA hybridized with cRNA from mock- and TMEV-infected astrocytes, revealed up-regulation of three sequences encoding MIP-2. Northern blot analysis indicated increased MIP-2 mRNA expression. Levels of MIP-2 in the supernatants of infected cells as detected by ELISA, varied directly with the multiplicity of infection used. This secreted CXCL2 was biologically active inducing chemoattraction of neutrophils but not of lymphocytes. CXCL2 was specifically induced by TMEV infection, since induction was inhibited by anti TMEV antibodies. The inflammatory cytokines, IL-1alpha and TNF-alpha, which are also induced in astrocytes by TMEV, were very potent inducers of CXCL2. Nevertheless, both mechanisms of induction follows different pathways as antibodies to both cytokines fails to inhibit TMEV-induced CXCL2 up-regulation. Sera from TMEV-infected SJL/J mice with chronic demyelination, but not from BALB/c TMEV-resistant mice, revealed CXCL2 at the peak of clinical disease. Our main novel finding is the strain-dependent differences in CXCL2 expression both in vitro and in vivo. This suggest an role for this chemokine in attracting immune cells within the CNS, which in turn, might trigger demyelination in this experimental model of MS.  相似文献   

5.
After intracerebral inoculation of Theiler's murine encephalomyelitis virus (TMEV), certain mouse strains develop a persistent central nervous system (CNS) infection and inflammatory demyelinating lesions containing infiltrates of mononuclear cells and macrophages. Previous findings demonstrating a strong correlation between disease incidence, the presence of particular H-2 region genotypes, and development of high levels of TMEV-specific delayed-type hypersensitivity (DTH) supported an immune-mediated basis for myelin breakdown. These findings led us to examine whether a possible causal relationship would be supported by a temporal analysis comparing the onset of clinical disease and the development of TMEV-specific cellular or humoral immune responses in susceptible and resistant strains. In susceptible SJL/J mice, TMEV-specific DTH and T cell proliferative (Tprlf) responses developed within 10 to 14 days postinfection, preceded the onset of clinical signs, and remained elevated for 6 mo. In contrast, resistant BALB/c mice developed low levels of TMEV-specific Tprlf and no measurable DTH. However, both strains attained comparable levels of TMEV-specific serum antibody responses with parallel kinetics. Both DTH and Tprlf responses in susceptible SJL/J mice were shown to be specific for TMEV and mediated by L3T4+, Lyt-1+2-, class II-restricted T cells. A model is proposed implicating an effector role for TMEV-specific DTH, wherein lymphokine release by virus-specific DTH T cells leads to the recruitment, accumulation, and activation of macrophages in CNS tissue, which cause bystander myelin destruction and provide a permissive population of host cells for TMEV persistence.  相似文献   

6.
R L Yauch  K Kerekes  K Saujani    B S Kim 《Journal of virology》1995,69(11):7315-7318
Intracerebral inoculation of susceptible strains of mice with Theiler's murine encephalomyelitis virus (TMEV) results in a chronic, immunologically mediated demyelinating disease that shares many features with human multiple sclerosis. CD4+ T lymphocytes play a critical role in the pathogenesis of virus-induced demyelinating disease. We have identified a region within amino acid residues 24 to 37 of the VP3 capsid protein of TMEV (VP3(24-37)) that is recognized by T lymphocytes from the demyelination-susceptible SJL/J strain of mice. The T-cell response to VP3(24-37) represents a predominant Th-cell response against the virus from either TMEV-immunized or TMEV-infected SJL/J mice, and viral epitopes VP1(233-250), VP2(74-86), and VP3(24-37) account for most of the Th-cell response to TMEV.  相似文献   

7.
Infection with Theiler''s murine encephalomyelitis virus (TMEV) in the central nervous system (CNS) of susceptible mice results in an immune-mediated demyelinating disease which is considered a relevant viral model of human multiple sclerosis. We previously demonstrated that the expression of positive costimulatory molecules (CD40, CD80, and CD86) is higher on the microglia of TMEV-resistant C57BL/6 (B6) mice than the microglia of TMEV-susceptible SJL/J (SJL) mice. In this study, we analyzed the expression levels of the negative costimulatory molecules PD-1 and PDL-1 in the CNS of TMEV-infected SJL mice and B6 mice. Our results indicated that TMEV infection induces the expression of both PD-1 and PDL-1 on microglia and macrophages in the CNS but not in the periphery. The expression of PD-1 only on CNS-infiltrating macrophages and not on resident microglia was considerably higher (>4-fold) in TMEV-infected SJL mice than TMEV-infected B6 mice. We further demonstrated that interleukn-6 (IL-6) is necessary to induce the maximal expression of PDL-1 but not PD-1 after TMEV infection using IL-6-deficient mice and IL-6-transgenic mice in conjunction with recombinant IL-6. In addition, cells from type I interferon (IFN) receptor knockout mice failed to upregulate PD-1 and PDL-1 expression after TMEV infection in vitro, indicating that type I IFN signaling is associated with the upregulation. However, other IFN signaling may also participate in the upregulation. Taken together, these results strongly suggest that the expression of PD-1 and PDL-1 in the CNS is primarily upregulated following TMEV infection via type I IFN signaling and the maximal expression of PDL-1 additionally requires IL-6 signaling.  相似文献   

8.
Intracranial inoculation of Theiler's murine encephalomyelitis virus (TMEV) leads to the development of a chronic demyelinating disorder in certain mouse strains. Development of this disease is controlled by at least two unlinked genes, one of which is within or linked to the H-2 complex. In the present study, we attempted to map the relevant H-2 loci involved in susceptibility to TMEV-induced demyelination using crosses between SJL and several congenic H-2 recombinant mouse strains bearing different combinations of MHC genes from the susceptible H-2s and resistant H-2b haplotypes all on the C57BL/10 strain background. The data suggest that the D region of the H-2 complex strongly influences development of the demyelinating disease because increased susceptibility correlates well with homozygosity for H-2s alleles in the D region, but not in K or I-A. In addition, we also attempted to correlate certain immune and nonimmune pathophysiologic parameters with the development of clinical disease. Specifically, central nervous system TMEV titers and TMEV-specific humoral and cellular [delayed-type hypersensitivity (DTH) and T cell proliferative (Tprlf)] responses were examined. The data show that TMEV-induced demyelinating disease did not correlate with either CNS TMEV titers or TMEV-specific humoral or Tprlf responses but did correlate closely with the presence of high levels of TMEV-specific DTH. Collectively, our findings demonstrating a strong correlation between disease incidence, the presence of particular H-2D region genotypes, and high levels of TMEV-specific DTH in susceptible strains (as well as previous findings showing predominant mononuclear cell infiltrates in CNS demyelinating lesions) support the hypothesis that the disease is immune mediated rather than a result of direct cytolytic effects of virus infection.  相似文献   

9.
Kang BS  Lyman MA  Kim BS 《Journal of virology》2002,76(22):11780-11784
Theiler's murine encephalomyelitis virus (TMEV) infection induces immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infectious model for human multiple sclerosis. To investigate the pathogenic mechanisms, two strains of TMEV (DA and BeAn), capable of inducing chronic demyelination in the central nervous system (CNS), have primarily been used. Here, we have compared the T-cell responses induced after infection with DA and BeAn strains in highly susceptible SJL/J mice. CD4(+) T-cell responses to known epitopes induced by these two strains were virtually identical. However, the CD8(+) T-cell response induced following DA infection in susceptible SJL/J mice was unable to recognize two of three H-2K(s)-restricted epitope regions of BeAn, due to single-amino-acid substitutions. Interestingly, T cells specific for the H-2K(s)-restricted epitope (VP1(11-20)) recognized by both strains showed a drastic increase in frequency as well as avidity after infection with DA virus. These results strongly suggest that the level and avidity of virus-specific CD8(+) T cells infiltrating the CNS could be drastically different after infection with these two strains of TMEV and may differentially influence the pathogenic and/or protective outcome.  相似文献   

10.
Intracranial infection of Theiler's murine encephalomyelitis virus (TMEV) induces demyelination and a neurological disease in susceptible SJL/J (SJL) mice that resembles multiple sclerosis. While the virus is cleared from the central nervous system (CNS) of resistant C57BL/6 (B6) mice, it persists in SJL mice. To investigate the role of viral persistence and its accompanying immune responses in the development of demyelinating disease, transgenic mice expressing the P1 region of the TMEV genome (P1-Tg) were employed. Interestingly, P1-Tg mice with the B6 background showed severe reductions in both CD4(+) and CD8(+) T-cell responses to capsid epitopes, while P1-Tg mice with the SJL background displayed transient reductions following viral infection. Reduced antiviral immune responses in P1-Tg mice led to >100- to 1,000-fold increases in viral persistence at 120 days postinfection in the CNS of mice with both backgrounds. Despite the increased CNS TMEV levels in these P1-Tg mice, B6 P1-Tg mice developed neither neuropathological symptoms nor demyelinating lesions, and SJL P1-Tg mice developed significantly less severe TMEV-induced demyelinating disease. These results strongly suggest that viral persistence alone is not sufficient to induce disease and that the level of T-cell immunity to viral capsid epitopes is critical for the development of demyelinating disease in SJL mice.  相似文献   

11.
Intracerebral inoculation of Theiler's murine encephalomyelitis virus (TMEV) produces chronic demyelination and persistent infection in the central nervous system (CNS) of susceptible SJL mice. This series of experiments examined the contribution of humoral immunity and C to myelin destruction. As in multiple sclerosis, mice persistently infected with TMEV had elevated levels of IgG and oligoclonal bands in the cerebrospinal fluid (CSF). Immunoblot studies revealed that even in animals exhibiting profound demyelination, IgG in the serum and CSF was directed primarily at virus antigen rather than at normal myelin components. Inflammatory cells positive for Ig were distributed mainly around blood vessels, but occasionally they infiltrated the spinal cord parenchyma. Rare examples of myelin sheaths positive for IgG were found by immunoelectron microscopy in spinal cord sections from infected mice; the third component of complement (C3) was commonly found in the walls of CNS blood vessels but not on myelin. Neither serum nor CSF IgG from infected mice bound to myelin sheaths or other CNS components in sections of normal syngeneic spinal cord. There were significantly more demyelinating lesions in infected mice depleted of C components with cobra venom factor. These data do not support a humoral autoimmune basis for the CNS demyelination that occurs in association with persistent TMEV infection. However, the humoral immune response directed at TMEV antigens may either limit virus spread or promote virus persistence.  相似文献   

12.
Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease serves as a relevant animal model of human multiple sclerosis. Myelin damage induced by TMEV infection appears to be immune mediated. Disease susceptibility correlates best with the temporal development of chronic, high levels of TMEV-specific, MHC class II-restricted delayed-type hypersensitivity (DTH) responses. We have proposed a model wherein these responses result in CNS demyelination via a macrophage-mediated terminal nonspecific bystander response. As virus-specific DTH responses appear to be intimately involved in the pathogenicity of CNS demyelination, it is critical to determine the specificity of these responses so that effector T cells specific for potential pathogenic epitopes can be targeted to serve as the focus of specific immunoregulatory processes. In the current study, the capsid protein specificity of the TMEV-susceptible SJL/J and TMEV-resistant C57BL/6 mouse strains was examined. DTH and Tprlf responses in both infected and immunized SJL/J mice were found to be predominantly directed toward the VP2 capsid protein, specifically to an epitope(s) contained within the N-terminal 150 amino acids of VP2. This same epitope was also found to be dominant in priming SJL/J mice for responses to challenge with intact virions. In contrast, the T cell-mediated responses of TMEV-resistant C57BL/6 mice did not show preferential reactivity towards VP2, because all three major capsid proteins (VP1, VP2, and VP3) elicited responses with essentially equal potency. The relationship of the restricted VP2 T cell epitope to predicted neutralizing antibody sites on the VP2 protein is discussed as is the potential use of this epitope for prevention and/or treatment of TMEV-induced demyelinating disease via the induction of epitope-specific tolerance.  相似文献   

13.
Intracerebral inoculation of Theiler's murine encephalomyelitis virus (TMEV) into susceptible mouse strains results in a chronic, immune-mediated demyelinating disease similar to human multiple sclerosis. Here, we examined the role of astrocytes as an APC population in TMEV-induced demyelination and assessed the potential consequences of T cell activation following Ag presentation. IFN-gamma-pretreated astrocytes were able to process and present all the predominant T cell epitopes of TMEV to virus-specific T cell hybridomas, clones, as well as bulk T cells. Despite low levels of proliferation of T cells due to prostaglandins produced by astrocytes, such Ag presentation by activated astrocytes induced the production of IFN-gamma, a representative proinflammatory cytokine, in TMEV-specific Th cell clones derived from the CNS of virus-infected mice. Furthermore, these Th cell clones mediate lysis of the astrocytes in vitro in a Fas-dependent mechanism. TUNEL staining of CNS tissue demonstrates the presence of apoptotic GFAP+ cells in the white matter of TMEV-infected mice. These results strongly suggest that astrocytes could play an important role in the pathogenesis of TMEV-induced demyelination by activating T cells, subsequently leading to T cell-mediated apoptosis of astrocytes and thereby compromising the blood-brain barrier.  相似文献   

14.
Intracerebral inoculation of mice with Theiler's murine encephalomyelitis virus results in an intense inflammatory response of mononuclear leukocytes which infiltrate into the central nervous system. Resistant strains of mice have the ability to clear virus whereas susceptible strains become infected persistently and are associated with chronic demyelination which is proposed to be immune-mediated. In an attempt to better understand the role of the immune response during demyelination, mononuclear leukocytes were isolated from the central nervous system of infected mice and stained by an immunoperoxidase technique with anti-Thy-1.2, anti-L3T4, anti-Lyt-2 and anti-MAC-1 mAb. Infection of susceptible SJL/J mice resulted in a biphasic immune response which peaked on days 7 and 27 post-infection. In contrast, a single peak (day 7) was observed in resistant C57BL/10SNJ mice. The presence of Thy-1.2, L3T4, and MAC-1+ cells was similar between the two strains. However, although the number of Lyt-2+ cells peaked on day 7 in C57BL/10SNJ mice, they were not detected in SJL/J mice until 14 days post-infection and gradually increased in number over the course of infection. To further study the role of T cells in demyelination, serial frozen sections of brain and spinal cord were stained for the presence of Lyt-2 and L3T4+ cells in the lesions of chronically infected SJL/J mice. L3T4+ cells were observed predominantly in perivascular regions while Lyt-2+ cells were observed infiltrating the parenchyma. These results provide further evidence that Lyt-2+ lymphocytes are important in the mechanism of susceptibility/resistance to Theiler's murine encephalomyelitis virus-induced demyelination.  相似文献   

15.
Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease is a chronic-progressive, immune-mediated CNS demyelinating disease and a relevant model of multiple sclerosis. Myelin destruction is initiated by TMEV-specific CD4(+) T cells targeting persistently infected CNS-resident APCs leading to activation of myelin epitope-specific CD4(+) T cells via epitope spreading. We examined the temporal development of virus- and myelin-specific T cell responses and acquisition of virus and myelin epitopes by CNS-resident APCs during the chronic disease course. CD4(+) T cell responses to virus epitopes arise within 1 wk after infection and persist over a >300-day period. In contrast, myelin-specific T cell responses are first apparent approximately 50-60 days postinfection, appear in an ordered progression associated with their relative encephalitogenic dominance, and also persist. Consistent with disease initiation by virus-specific CD4(+) T cells, CNS mononuclear cells from TMEV-infected SJL mice endogenously process and present virus epitopes throughout the disease course, while myelin epitopes are presented only after initiation of myelin damage (>50-60 days postinfection). Activated F4/80(+) APCs expressing high levels of MHC class II and B7 costimulatory molecules and ingested myelin debris chronically accumulate in the CNS. These results suggest a process of autoimmune induction in which virus-specific T cell-mediated bystander myelin destruction leads to the recruitment and activation of infiltrating and CNS-resident APCs that process and present endogenous myelin epitopes to autoreactive T cells in a hierarchical order.  相似文献   

16.
TO subgroup strains of Theiler's murine encephalomyelitis virus (TMEV) synthesize L* protein from an alternative initiation codon. We first demonstrated L* expression in the central nervous system (CNS) of TMEV-infected mice during the acute phase of infection by immunoprecipitation and immunoblotting with anti-L* antibody. In addition, we generated mutant viruses which synthesize FLAG or 3xFLAG epitope-tagged L* protein. With a mutant virus expressing 3xFLAG epitope-tagged L*, designated DA/3xFLAGL*, we investigated L* in the CNS in the acute phase of infection. DA/3xFLAGL* did not change the virus tropism in comparison with wild-type virus, and L* was clearly identified in the CNS in both susceptible and resistant strains of mice. Double immunolabeling studies showed that L* is colocalized with TMEV polyprotein and exclusively expressed in neurons.  相似文献   

17.
Infection with Theiler''s murine encephalomyelitis virus (TMEV) in the central nervous system (CNS) causes an immune system-mediated demyelinating disease similar to human multiple sclerosis in susceptible but not resistant strains of mice. To understand the underlying mechanisms of differential susceptibility, we analyzed viral replication, cytokine production, and costimulatory molecule expression levels in microglia and macrophages in the CNS of virus-infected resistant C57BL/6 (B6) and susceptible SJL/J (SJL) mice. Our results indicated that message levels of TMEV, tumor necrosis factor alpha, beta interferon, and interleukin-6 were consistently higher in microglia from virus-infected SJL mice than in those from B6 mice. However, the levels of costimulatory molecule expression, as well as the ability to stimulate allogeneic T cells, were significantly lower in TMEV-infected SJL mice than in B6 mice. In addition, microglia from uninfected naïve mice displayed differential viral replication, T-cell stimulation, and cytokine production, similar to those of microglia from infected mice. These results strongly suggest that different levels of intrinsic susceptibility to TMEV infection, cytokine production, and T-cell activation ability by microglia contribute to the levels of viral persistence and antiviral T-cell responses in the CNS, which are critical for the differential susceptibility to TMEV-induced demyelinating disease between SJL and B6 mice.BeAn and DA are members of Theiler''s original subgroup of Theiler''s murine encephalitis virus (TMEV) (52). Intracerebral inoculation of susceptible mice, such as SJL/J (SJL) mice, with either of these viruses results in a biphasic disease characterized by early encephalitis and late chronic demyelination (24). Infection of susceptible mice with these viruses results in a chronic, white matter-demyelinating disease similar to human multiple sclerosis (24). In susceptible strains, infection of the central nervous system (CNS) with TMEV leads to a chronic immune response to viral antigens, which eventually leads to autoimmune responses against myelin autoantigens (29). In contrast, resistant mouse strains, such as C57BL/6 (B6), rapidly clear virus from the CNS and do not develop demyelinating disease, suggesting that viral persistence in these mice corresponds to susceptibility to disease (26, 42, 45). Demyelination in susceptible mice is considered to be immunity mediated, as removal of immune components reduces the clinical onset and severity of demyelinating disease (9, 25, 44, 47).In particular, infiltration of proinflammatory CD4+ Th1-type cells has been associated with tissue destruction and demyelination (41, 56). A number of CD4+ T cells specific for TMEV during the course of disease in SJL mice recognize four predominant viral capsid epitopes (VP1233-250, VP274-86, VP324-37, and VP451-70), with one each on the external and internal capsid proteins (10, 19, 55, 56). The external capsid epitopes appear to account for the majority (∼80%) of major histocompatibility complex (MHC) class II-restricted T-cell responses to TMEV capsid proteins (55, 57). Recently, viral capsid epitopes recognized by CNS-infiltrating CD4+ T cells from TMEV-infected B6 mice have also been identified (18). When levels of virus capsid-specific CD4+ T cells in the CNS are compared between B6 and SJL mice at early stages of viral infection, significantly higher levels are found in the CNS of resistant B6 mice (30), suggesting that virus-specific CD4+ T cells are important for protection from demyelinating disease during initial immune responses (2). Similarly, levels of CNS-infiltrating virus-specific CD8+ T cells in the CNS are as much as threefold higher in resistant mice at the same time point (28). Therefore, it appears that levels of both initial CD4+ and CD8+ T-cell responses to the virus are critically important in setting the stage of viral persistence/clearance and consequent susceptibility or resistance to inflammatory demyelinating disease.In order to further understand the potential mechanisms of differences in susceptibility and antiviral immunity levels between SJL and B6 mice, the properties of resident microglial cells and infiltrating macrophages in the CNS during the early stage of viral infection in these mouse strains were investigated. It has previously been established that nonprofessional antigen-presenting cells (APCs; mainly microglial cells and astrocytes) isolated from the CNS of TMEV-infected SJL mice are capable of presenting antigens to both TMEV- and CNS autoantigen-specific T-cell hybridomas and clones (21, 33, 37). Furthermore, microglial cells and/or infiltrating macrophages in the CNS are known to be a major cell population supporting viral persistence during chronic infection (4). Hence, these cells support the replication of TMEV and the activation and/or differentiation of CD4+ and CD8+ T cells infiltrating the CNS of virus-infected mice. Therefore, CNS APCs involved in triggering T-cell responses and harboring viral persistence may ultimately determine susceptibility/resistance to TMEV-IDD via their effects on virus clearance/persistence as well as on target tissue inflammation.In this study, we compared the potential roles of microglia and macrophages from TMEV-infected susceptible SJL and resistant B6 mice in the innate and adaptive immune responses affecting viral persistence and ultimate disease susceptibility. Our results indicate that viral replication and cytokine production levels are consistently higher in microglia from TMEV-infected SJL mice than in those from B6 mice. In addition, the expression of costimulatory molecules is significantly higher in resistant B6 mice throughout the course of viral infection, suggesting more efficient T-cell activation in resistant B6 mice. On the other hand, both virus replication and type I interferon (IFN) production in microglia from naïve SJL mice are significantly higher than those in such cells from naïve B6 mice. Therefore, differences in the intrinsic properties of microglia in viral replication and virus-induced innate cytokine production are likely to contribute significantly to viral persistence, cellular infiltration to the CNS, and consequent inflammation, leading to the development of demyelinating disease.  相似文献   

18.
Microglia are resident central nervous system (CNS) macrophages. Theiler's murine encephalomyelitis virus (TMEV) infection of SJL/J mice causes persistent infection of CNS microglia, leading to the development of a chronic-progressive CD4(+) T-cell-mediated autoimmune demyelinating disease. We asked if TMEV infection of microglia activates their innate immune functions and/or activates their ability to serve as antigen-presenting cells for activation of T-cell responses to virus and endogenous myelin epitopes. The results indicate that microglia lines can be persistently infected with TMEV and that infection significantly upregulates the expression of cytokines involved in innate immunity (tumor necrosis factor alpha, interleukin-6 [IL-6], IL-18, and, most importantly, type I interferons) along with upregulation of major histocompatibility complex class II, IL-12, and various costimulatory molecules (B7-1, B7-2, CD40, and ICAM-1). Most significantly, TMEV-infected microglia were able to efficiently process and present both endogenous virus epitopes and exogenous myelin epitopes to inflammatory CD4(+) Th1 cells. Thus, TMEV infection of microglia activates these cells to initiate an innate immune response which may lead to the activation of naive and memory virus- and myelin-specific adaptive immune responses within the CNS.  相似文献   

19.
After (IC) inoculation of the DA strain of TMEV, SJL/J mice develop chronic CNS infection with marked mononuclear cell infiltration of spinal cord leptomeninges and white matter and concomitant demyelination. In the present study the temporal course of cell-mediated and humoral immune responses to virus were measured in this infection. It was shown that chronic TMEV infection is associated with the development of immunologically specific spleen cell reactivity as judged by in vitro incorporation of 3H-TdR into DNA in response to inactivated TMEV antigen. Spleen cell reactivity is first detectable about 2 months after infection, persists for at least 1 year, and correlates with the temporal development of serum-neutralizing antibody. The late development of sensitized spleen cells is not the result of an immunosuppressive effect of this virus infection since infected mice exhibit normal spleen cell proliferative responses to T cell mitogens and produce normal antibody responses to a heterologous protein antigen, sheep red blood cells. In addition, anti-viral antibody inhibits virus-induced spleen cell reactivity. Finally, the antigen-reactive lymphocyte subpopulation within the spleen responsible for proliferation to TMEV antigen are T cells and not B cells.  相似文献   

20.
Duncan DS  Miller SD 《PloS one》2011,6(4):e18548
The CNS is a unique organ due to its limited capacity for immune surveillance. As macrophages of the CNS, microglia represent a population originally known for the ability to assist neuronal stability, are now appreciated for their role in initiating and regulating immune responses in the brain. Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease is a mouse model of multiple sclerosis (MS). In response to TMEV infection in vitro, microglia produce high levels of inflammatory cytokines and chemokines, and are efficient antigen-presenting cells (APCs) for activating CD4(+) T cells. However, the regulatory function of microglia and other CNS-infiltrating APCs in response to TMEV in vivo remains unclear. Here we demonstrate that microglia increase expression of proliferating cell nuclear antigen (PCNA), and phenotypically express high levels of major histocompatibility complex (MHC)-Class I and II in response to acute infection with TMEV in SJL/J mice. Microglia increase expression of the inhibitory co-stimulatory molecule, B7-H1 as early as day 5 post-infection, while CNS-infiltrating CD11b(+)CD11c(-)CD45(HIGH) monocytes/macrophages and CD11b(+)CD11c(+)CD45(HIGH) dendritic cells upregulate expression of B7-H1 by day 3 post-infection. Utilizing a neutralizing antibody, we demonstrate that B7-H1 negatively regulates TMEV-specific ex vivo production of interferon (IFN)-γ, interleukin (IL)-17, IL-10, and IL-2 from CD4(+) and CD8(+) T cells. In vivo blockade of B7-H1 in SJL/J mice significantly exacerbates clinical disease symptoms during the chronic autoimmune stage of TMEV-IDD, but only has minimal effects on viral clearance. Collectively, these results suggest that CNS expression of B7-H1 regulates activation of TMEV-specific T cells, which affects protection against TMEV-IDD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号