首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Determinations of primary productivity were made by the radiocarbon method at regular intervals over a year in samples, taken from the eutrophic waters of the Menai Strait, North Wales, and contained in bottles of capacities from 135 ml up to 2290 ml. Fixation per unit volume in particulate matter retained by 0 · 45 m pore size membrane filters was independent of bottle size over most of the year. There was a consistent divergence, however, during the period of rapid phytoplankton growth in the spring, when small bottles gave up to three times higher values than large ones. Possible effects of bottle size on primary productivity determinations are discussed but the cause of this particular result is not apparent.  相似文献   

2.
A mesocosm facility is being developed by the CSIRO Division of Fisheries to study the movement, fate and impact of pollutants in coastal marine environments. Initially, we are studying coastal habitats in S.W Australia that are subject to wave action. A 12 week experiment assessed changes in biotic and abiotic components of sediment brought from the field into mesocosms. In these sediments, benthic microalgae are the major primary producers. Microalgal standing stocks were measured as the concentration of chlorophyll a and phaeopigments in the top 2 cm of sediment, and these measures were compared among mesocosms and field sites. Significant increases in chlorophyll a and phaeopigments, increased numbers of species and a shift from episammic to periphytic diatoms were observed, possibly caused by decreased water motion in mesocosms or other containment effects. Results from statistical power analyses suggested that our sampling was sufficiently well replicated and successfully incorporated variation at small spatial and temporal scales. Sampling effort used in this experiment should form the basis for future work with benthic microalgae.  相似文献   

3.
Using time-course, natural-light incubations, we assessed the rate of carbon uptake at a range of light intensities, the effect of supplemental additions of nitrogen (as NH4+ or urea) on light and dark carbon uptake, and the rates of uptake of NH4+ and urea by phytoplankton from Vineyard Sound, Massachusetts from February through August 1982. During the winter, photoinhibition was severe, becoming manifested shortly after the start of an incubation, whereas during the summer, there was little to no evidence of photoinhibition during the first several hours after the start of an incubation. At light levels which were neither photoinhibiting nor light limiting, rates of carbon uptake normalized per liter were high and approximately equal during winter and summer (22–23 μg C·l?1 · h?1), and low during spring (<10 μgC·l?1· h?1). In contrast, on a chlorophyll a basis, rates of carbon fixation were as high during spring (15–20μg C·μg Chl a?1·h?1), when concentrations of chlorophyll a were at the yearly minimum (<0.5 μg · l?1) as during the summer, when chlorophyll a concentrations were substantially higher (0.8–1.3 μg · l?1). Highest rates of NH4+ and urea uptake were observed during summer, and at no time of the year was there evidence for severe nitrogen deficiency, although moderate nitrogen nutritional stress was apparent during the summer months.  相似文献   

4.
刺参养殖池塘初级生产力及其粒级结构周年变化   总被引:2,自引:0,他引:2  
姜森颢  周一兵  唐伯平  蔡勋 《生态学报》2014,34(7):1698-1706
研究了刺参(Apostichopus japonicus Selenka)养殖池塘浮游植物初级生产力及粒级结构的周年变化规律,旨在明确刺参养殖池塘的基础生态学特征,为刺参养殖生产和管理提供科学支持。结果表明:刺参养殖池塘初级生产力年平均值为(5.16±3.04)gO2m-2d-1,全年呈现明显的季节变化,初级生产量分别在初春、夏季和初冬形成高峰。初级生产力群落净产量占毛产量的50.2%。P/R值与日P/B系数的年平均值分别为2.20±1.25和0.39±0.35。按初级生产力水平和P/R值划分的水体营养类型,调查刺参养殖池塘属富营养型水体;初级生产量随深度的增加而递减,最高生产层约在透明度的0.5倍处,且0.5倍透明度(约50 cm)以上水层初级生产量占水柱总产量的56.3%;不同粒级浮游植物生产量占总生产量的百分比具有明显的季节变化。除夏季外,以小型浮游植物(micro-,20—200μm)对初级生产力的贡献最大(43.5%),夏季为微型浮游植物(nano-,2—20μm)对初级生产力贡献最大(35.3%)。以年平均值计算,不同粒级浮游植物初级生产量占总生产量百分比的大小顺序为:小型(40.1%)微型(28.2%)中大型(16.1%)超微型(15.7%)。回归分析表明:试验池塘初级生产力水平与水温、营养盐中的氨氮和亚硝酸氮均呈显著的相关关系(P0.05)。结果提示,刺参养殖池塘初级生产力的季节变化显著,垂直分布并不均匀,小型浮游植物是其生态系统中的主要生产者。  相似文献   

5.
Year-round measurements of the standing crop of epilithic algae (as chlorophyll a concentration) in two streams — one second and one fourth order (map scale 1:63 360) — in interior Alaska (64°–65° N) were only about one tenth that reported from streams of temperate North America. Cell densities in these streams, however, were similar to those in comparable temperate streams. Year-round domination of the benthic flora by very tiny diatoms (Achnanthes spp.) may explain the apparent disparity between low chlorophyll a content and nearly average cell densities. Chlorophyll a standing crop in a more alkaline groundwater-fed stream, however, was higher and within the range of similarly sized temperate streams. Maximum chlorophyll a standing crop varied positively with alkalinity in 5 clear-water streams where standing crop was measured on natural or artificial substrates. Seasonal mean concentrations of sestonic chlorophyll a (used as estimates of benthic algal chlorophyll a standing crop) varied directly and significantly with alkalinity among ten clear-water streams; and, with total phosphorus among 8 of 10 clear-water and 5 brown-water streams studied. During the summer, when there is little darkness, gross primary productivity (as estimated by the diurnal dissolved-oxygen method) was similar to that of northern temperate streams. Gross primary productivity was also seen to vary directly with alkalinity in 5 clear-water streams of this region.U.S. Fish and Wildlife Service  相似文献   

6.
Gross and net primary production together with chlorophyll-a biomass were investigated with respect to depth and diurnal changes in three categories of inland waters (reservoirs, temporary ponds, brackish water lagoons) in Sri Lanka. Ten field sites, in both the dry and wet zones of the island, were investigated. Bimodal productivity profiles were recorded in two of the three reservoirs studied. The diel pattern of net photosynthetic rate varied between sites although peak photosynthetic efficiency occurred at solar noon. Surface photoinhibition was characteristic of the reservoirs and brackish water lagoons but not of the temporary ponds. Mean gross primary production was 3.02 g C m–2 d–1 but was higher in the temporary ponds than in the reservoirs. The gross primary production in the brackish water Koggala Lagoon at 0.08 g C m–2 d–1 is a record low for tropical lagoons and was 2.5 times less than the two other lagoons investigated. Variability in net primary production between sites was similar to the variation in gross production with a relatively low mean value for tropical inland waters of 0.495 C m–2 d–1. Mean maximum photosynthetic rate was 0.30 mg C m–3 h–1 but was lower in the reservoirs than in the temporary ponds and lagoons.  相似文献   

7.
Submerged aquatic vegetation is known as a key structural component and regulator in ecosystems. In this mesocosm study, we examine community- and system-level responses to the presence of Vallisneria americana (L), a deep-rooted macrophyte. Phytoplankton, bacteria and filamentous algal biomasses were significantly lowered in the presence of V. americana. In addition, mesocosms with macrophytes had significantly reduced porewater phosphate and iron, water column dissolved organic carbon and total suspended solids, but elevated sediment redox. All mesocosms were net autotrophic (gross primary production/respiration >1). Compared to the macrophyte treatments, the control mesocosms had lower diel net primary production (NPP) midway through the experiment (d 16), but at the end of the experiment (d 36), the controls had the higher values, presumably due to increased filamentous algae. NPP and NPP/R were constant in the macrophyte treatments, whereas NPP/R increased significantly from middle to end of the experiment in the controls. We show that community and system-level responses to the presence of V. americana have significant consequences on system structure and function.  相似文献   

8.
Additions of iron and NTA had minor stimulatory effects on the phytoplankton productivity of samples of water from two calcareous Michigan lakes in autumn and winter contrary to effects at other seasons. Added Daphnia pulex significantly reduced phytoplankton productivity by grazing at this time of year, in all tests at all levels of addition from 4–32 animals/l, greatly in excess of any possible beneficial effects of increased nutrient availability.  相似文献   

9.
Ersin Kivrak 《Biologia》2006,61(4):339-345
Seasonal changes in phytoplankton community structure of the lake Tortum were studied over one year period, from March 2002 to February 2003. The collected data were compared with the data collected 21 years ago. Chlamydomonas microsphaerella, Cyclotella krammeri, C. glomerata, and Ceratium hirundinella were identified to be dominant several times during the study period. Species diversity and biomass of the phytoplankton were very low in spite of sufficient and high levels of nutrient concentrations. Maximum phytoplankton density levels were observed during summer and late autumn. Phytoplankton density was positively correlated with nutrients, temperature and pH, and it was negatively correlated with Secchi depth and dissolved oxygen. Phytoplankton growths were negatively affected from water transparency and high levels of water mass transport (circulation) and velocity in the lake.  相似文献   

10.
While most biodiversity and ecosystem functioning (BEF) studies have found positive effects of species richness on productivity, it remain unclear whether similar patterns hold for marine phytoplankton with high local richness. We use the continuous trait‐based modelling approach, which assumes infinite richness and represents diversity in terms of the variance of the size distribution, to investigate the effects of phytoplankton size diversity on productivity in a three‐dimensional ocean circulation model driven by realistic physics forcing. We find a slightly negative effect of size diversity on primary production, which we attribute to several factors including functional trait‐environment interactions, flexible stoichiometry and the saturation of productivity at low diversity levels. The benefits of trait optimisation, whereby narrow size distributions enhance productivity under relatively stable conditions, tend to dominate over those of adaptive capacity, whereby greater diversity enhances the ability of the community to respond to environmental variability.  相似文献   

11.
This study was conducted to analyse vertical dynamics of phytoplankton distribution in Shira Lake during the summer stratification regime. From late June to September phytoplankton in Shira Lake were stratified with the maximum in the lower part of the thermocline, at a depth of 8–12 m, with a chlorophyll concentration up to 23 g and biomass up to 5 mg l–1. Maxima of chlorophyll and biomass of cyanobacteria and green algae were in different layers. From June to September a major part of chlorophyll a was in green algae, while under ice – in cyanobacteria. The variable fluorescence proves high photosynthetic activity of algae in the depth assemblage. Epifluorescent analysis disclosed that additional light-harvesting pigments were better developed in cells from the depth maximum. The maximum of gross primary production calculated from fluorescence corresponded to the depth maximum of phytoplankton. Primary production over a season was 2.7 gO2 m–2. Formation mechanisms of the depth maximum of phytoplankton are discussed in this paper.  相似文献   

12.
The primary production of phytoplankton in Lake Vechten   总被引:6,自引:6,他引:0  
The primary production of the phytoplankton of Lake Vechten (The Netherlands) (area, 4.7 ha; mean depth, 6 m), an unpolluted and stratified sandpit was investigated from 1969 to 1980 (except in 1971, 1975 and 1976) by the in situ 14C-technique. Other data collected include: solar radiation, transparency, oxygen and thermal structure. In winter and spring diatoms, Cryptophyceae and Chlorococcales were important algal groups, while in summer Dinophyceae and Chrysophyceae were important. The chlorophyll-a concentration was compared to the cellular biovolumes (= fresh weight) of the most abundant phytoplankton species. The primary production maxima occurred in winter, spring and during the summer stratification. The vertical profiles of photosynthesis exhibit light inhibition at surface to a maximum of 4 m. The maximum of zooplankton grazing in May–June caused a sharp decrease in the phytoplankton biomass and seston concentration accompanied by the highest transparency (clear water phase).The values for cellular C-fixation range from 10 to 1307 mg C · M–2 · day–1 (annual mean of 280 mg C · m–2 · day–1). High dark fixation (up to 100%) was encountered in the metalimnion and hypolimnion from July to October together with peaks of 14C-fixation due to a crowding of phytoplankton and phototrophic anoxic bacteria. Extracellular excretion by phytoplankton, investigated in 1977 to 1979, was 15% of the annual mean of the total C-fixation. The photosynthetic efficiency, turnover rates, and activity coefficients were low, particularly in the summer months when Ceratium hirundinella was predominant. The seasonal variations were controlled mainly by solar radiation and probably phosphate, the former being more important in the non-stratification period and the latter during the stratification period.  相似文献   

13.
During the course of 1996, phytoplankton was monitored in the turbid, freshwater tidal reaches of the Schelde estuary. Using a simple light-limited primary production model, phytoplankton growth rates were estimated to evaluate whether phytoplankton could attain net positive growth rates and whether growth rates were high enough for a bloom to develop. Two phytoplankton blooms were observed in the freshwater tidal reaches. The first bloom occurred in March and was mainly situated in the most upstream reaches of the freshwater tidal zone, suggesting that it was imported from the tributary river Schelde. The second bloom occurred in July and August. This summer bloom was situated more downstream in the freshwater tidal reaches and appeared to have developed within the estuary. A comparison between phytoplankton growth rates estimated using a simple primary production model and flushing rate of the water indicated that no net increase in phytoplankton biomass was possible in March while phytoplankton could theoretically increase its biomass by 20% per day during summer. Chlorophyllaconcentrations at all times decreased strongly at salinities between 5–10 psu. This decline was ascribed to a combination of salinity stress and light limitation. Phytoplankton biomass and estimated annual net production were much higher in the freshwater tidal zone compared to the brackish reaches of the estuary (salinity > 10 psu) despite mixing depth to euphotic depth ratios being similar. Possible reasons for this high production include high nutrient concentrations, low zooplankton grazing pressure and import of phytoplankton blooms from the tributary rivers.  相似文献   

14.
Ecological studies of phytoplankton in Tai Tam Bay,Hong Kong   总被引:1,自引:1,他引:0  
Of the 141 phytoplankton species found during the sampling period, the Bacillariophyceae was the most important group and included 70% of the total number of species; the Dinophyceae comprised a smaller percentage (28%) of the taxa; and only 3 chrysophyte species occurred throughout the study period. In terms of numbers of individuals, the Bacillariophyceae remained as the dominant group and contained 97% of the total numbers whereas the Dinophyceae represented only 3% of the total phytoplankton population.The most dominant diatom species was Thalassiosira allenii Takano which constituted 35% of the Bacillariophyceae group whereas the most abundant dinoflagellate was Prorocentrum gracile Schutt which represented 40% of the total Dinophyceae numbers.Chlorophyll a levels varied from 0.40 to 32.31 mg m–3 at the surface and from 0.33 to 33.91 mg m–3 at the bottom.Seasonal trends of phytoplankton abundance and chlorophyll a concentration were observed in the survey area with generally high peaks in summer and low values during winter months. Such variations can be attributed to the interactions between, and changes of, various environmental parameters, such as temperature, salinity and nutrient availability (particularly silicate).  相似文献   

15.
Three methods of measuring phytoplankton biomass (microscopic counting, electronic particle counting and determination of chlorophyll a concentration) were compared on both a daily (4 days) and a seasonal basis, in Charnwood Water, a small English freshwater lake. Correlations among measures were generally poor within days. However, good correlations were achieved among all methods on a seasonal basis. Seasonal correlations, in particular those between total particle numbers from particle counting and algal numbers from microscope, were affected by the degree of stability of the water column, with different relationships being found for mixed periods compared to stratified periods. These differences were related to an increased amount of particulate matter affecting the total particle numbers estimate during mixed periods. Other workers have found better relationships among these phytoplankton biomass methods within short periods, but there appears to be considerable variability among lakes. Therefore, it is recommended that the most appropriate method be evaluated on a individual lake basis, depending on the aims of the study.  相似文献   

16.
Samples of the phytoplankton in a freshwater lake, Lake Liddell, New South Wales (Lat: 32° 22 S, Long. 150° 1 E) were collected every 4 weeks between October 1987 and November 1988. Chlorophyll a concentrations ranged from 1.8 g 1–1 to 9.1 g 1–1 and were positively correlated with the following nutrient parameters: total and nett mass additions of nitrate/nitrite-N and total-N, total additions of Kjeldahl-N, and nett mass addition N-P ratios. There was no correlation between lake nutrient concentrations and chlorophyll a. Factors other than nutrient concentrations appeared to be effecting chlorophyll a concentrations as summer levels were low despite nutrient concentrations being at a maximum. In spring and summer the phytoplankton was dominated by chlorophytes, with dinoflagellates and diatoms most abundant in autumn. During winter cyanobacteria were the most abundant. The relative abundance of chlorophytes was positively correlated with in lake nitrate/nitrite-N concentrations whereas the relative abundance of cyanobacteria was negatively correlated with this parameter. Based on chlorophyll a concentrations and the phytoplankton flora Lake Liddell can be classified as mesotrophic.  相似文献   

17.
Antal Schmidt 《Hydrobiologia》1994,289(1-3):97-108
The Danube is a large eutrophic river and may be one of the best studied rivers in the world. This paper presents a short characterization of the biological water quality based on data from the 1986–1992 period, collected in the Southern Hungarian section at 1480.2 river km. Variations in the hydrological features (including discharge and turbulence) are the most important factors determining the total phytoplankton biomass in the River Danube. A good correlation has been found between chlorophyll a content and discharge, from early spring to autumn, whereas the suspended matter appeared weakly related to discharge. In addition, some taxonomic notes refer to the most common members of the phytoplankton, as well as to several rare taxa.  相似文献   

18.
Romo  Susana  Miracle  Rosa 《Hydrobiologia》1994,275(1):153-164
A long-term phytoplankton study was carried out in the Albufera of Valencia, a shallow hypertrophic lake (surface area 21 km2, mean depth 1 m, total inorganic nitrogen load 155 g m-2 y-1, total inorganic phosphate load 15 g m-2 y-1) from 1980 to 1988. The lake functions as a reservoir for the surrounding rice cultivation. From 1940's to 1988, its phytoplankton assemblage has been altered from a mesotrophic to a hypertrophic character, as consequence of the increasing pollution. For 1980–88, annual variations in the phytoplankton were less pronounced than seasonal changes. The hypertrophic and morphometric features of the lake favoured the stability of the phytoplankton assemblage and chlorophyll a levels during the study period. Seasonal and horizontal distribution of the total phytoplankton abundance and biomass were highly influenced by the hydrological cycle of the lagoon. Compared with other shallow nutrient rich lakes, the Albufera of Valencia is similar to the shallow hypertrophic lakes of the Netherlands.  相似文献   

19.
Daily changes of inorganic carbon and nitrogen uptake were measured in May in 1986 in Lake Nakanuma, Japan. Uptake of inorganic carbon and ammonium in the light-bottle experiments in the 1 m layers, showed daily changes similar to chlorophyll a changes, though the uptake activities peaked before chlorophyll a peaks (phytoplankton blooms) appeared. Potential growth rates of phytoplankton and observed growth rates were calculated from the uptake rates and chlorophyll a changes. The potential growth rates did not always correspond to the observed growth rates. The potential growth rates did not correlate with the loss rates. The correlation between the observed growth rates and the loss rates was better. These results suggest that though the increase of uptake activities may be necessary for occurrence of phytoplankton blooms, loss processes may affect the occurrence of blooms.  相似文献   

20.
Our 1 year study was aimed at assessing seasonal patterns and controls on phytoplankton primary production (PPR) and biomass (chlorophyll a) in a fourth order section of the middle Cape Fear River in North Carolina, USA, and to determine the impact of three low-head lock and dam (LD) structures on these variables within the 70 km study reach of this coastal river. Mean concentrations of NO3 –N, NH4 +–N and soluble reactive phosphorus (SRP) averaged 52.9, 6.0, and 3.6 μmol l−1 in monthly sampling, while the average light attenuation coefficient was 2.4 m−1. The average euphotic depth was 2.1 m. Nutrient concentrations and attenuation coefficients were not significantly different above versus below each LD, or along the entire study reach. Significantly higher concentrations of dissolved O2 below versus above each LD were attributed to re-aeration during spillway transit. No seasonal pattern in physicochemical properties was apparent. Phytoplankton chlorophyll a concentrations ranged from <1 to 36 μg l−1, while rates of primary production ranged from 18 to 2,580 mg C m−2 day−1, with values for both variables peaking in the spring and early summer. Chlorophyll a and primary productivity values were consistently higher above versus below each LD in May and June suggesting a seasonal effect, but values were otherwise similar such that overall means were not significantly different. Several factors point to light as the primary control on phytoplankton in the middle Cape Fear River: high nutrient concentrations; a low ratio of euphotic : mixing depth (0.46); progressive increases in chlorophyll a and radiocarbon uptake in all treatments in quarterly nutrient enrichment bioassays conducted at levels of irradiance elevated relative to in situ river values; and consistently low quarterly values of (maximum rate of chlorophyll-normalized C uptake; ≤3.7 mg C mg chl a−1 h−1) and I k (light saturation parameter; ≤104 μmol photons m−2 s−1) for photosynthetic light–response (PI) curves. Handling editor: L. Naselli-Flores  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号