首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known that extracellular matrix components (ECM) may serve as a storage site to concentrate and stabilize growth factors in the vicinity of cells. IGF-I is expressed in most fetal tissues and it is involved in anabolic effects on protein and sulphated glycosaminoglycans biosynthesis, cell proliferation and differentiation. We demonstrated that human umbilical cord (UC) tissues contain large amounts of IGF-I and IGF-I-binding proteins (BP-3 and BP-1). Particularly Wharton's jelly appears to be an abundant reservoir of IGF-I and BPs. Relatively low amount of cells and large amounts of collagen and glycosaminoglycans in UC tissues (especially in Wharton's jelly) suggest that IGF-I may play a major role in stimulation of these cells to produce ECM components. The specific BPs in these tissues may be important modulators of IGF-I action during fetal development.  相似文献   

2.
Proteoglycans of Wharton's jelly contain mainly chondroitin/dermatan sulphate chains. The predominant proteoglycan is decorin (core proteins of 45 and 47 kDa), although the core proteins of biglycan (45 kDa), versican (260 kDa) and of other proteoglycans (90, 110, 220 kDa) were also detected (Gogiel et al., 2003). The aim of the present study was to compare the proteoglycan composition of Wharton's jelly of newborns delivered by healthy mothers and those with pre-eclampsia. Proteoglycans from pre-eclamptic Wharton's jelly had a higher sulphated glycosaminoglycan/protein ratio than those of normal tissue. Pre-eclampsia is associated with a lower level of all proteoglycan core proteins, especially those of higher molecular mass (such as versican), although the same set of core proteins were found in normal and pre-eclamptic Wharton's jelly. The alterations in the proteoglycan composition of Wharton's jelly may affect the mechanical properties of the umbilical cord and, in the case of pre-eclampsia, disturb foetal blood circulation.  相似文献   

3.
Pre-eclampsia, the most common pregnancy associated syndrome, is connected with remodelling of extracellular matrix of the umbilical cord tissues. Since the fibroblast growth factor (FGF) is known to be a stimulator of collagen and glycosaminoglycan biosynthesis, one may expect that it plays an important role in such a remodelling. Studies performed on the umbilical cords of 10 control and 10 pre-eclamptic newborns demonstrated that both the umbilical cord arterial wall and Wharton's jelly contain FGF mainly in complexes with the components of different molecular mass. Pre-eclampsia is associated with a decrease of endogenous FGF-binding by soluble high molecular mass components of the umbilical cord. It is suggested that FGF released from these complexes may be actively bound by fibroblasts of the umbilical cord, stimulating them to produce collagen and sulphated glycosaminoglycans.  相似文献   

4.
5.
The lipid composition of vascular walls changes during development, ageing and pathological processes. Preeclampsia is the most common pregnancy-associated pathological syndrome. It is accompanied by significant remodelling of the extracellular matrix, both in the umbilical cord vessels and in the surrounding Wharton's jelly. Lipids of the umbilical cord have not been extensively studied. Here we evaluate the lipid composition of the umbilical cord vein and its alteration in preeclampsia. Thin layer chromatography and high-performance liquid chromatography were employed for these analyses. It was found that the umbilical cord vein wall, as with most human tissues, contains free fatty acids, mono-, di- and triacylglycerols, free cholesterol and its esters. The characteristic feature is the presence of high amounts of monounsaturated fatty acids, mainly myristoleic acid (C14:1) and oleic acid (C18:1), and polyunsaturated fatty acids, including eicosapentaenoic acid (C20:5) and docosahexaenoic acid (C22:6), which are rather minor lipid components of most human tissues. They exist both in a free form and in a form of acylglycerols and cholesterol esters. Preeclampsia is associated with an increase in the accumulation of free fatty acids, acylglycerols and cholesterol esters in the umbilical cord vein wall, with a proportional reduction in unsaturated fatty acid contents in all the investigated lipid fractions. Total amount of myristoleate was similar to control values. It is suggested that stimulation of lipolysis in maternal tissues increases supply of free fatty acids to foetal blood and promotes the accumulation fatty acids and their esters in some foetal vascular walls.  相似文献   

6.
7.
There is a difference in the susceptibility to inflammation between the umbilical vein (UV) and the umbilical arteries (UAs). This led us to hypothesize that there is an intrinsic difference in the pro-inflammatory response between UA and UV. Real-time quantitative RT-PCR and microarray analysis revealed higher expression of interleukin (IL)-1β and IL-8 mRNA in the UV and differential expression of 567 genes between the UA and UV associated with distinct biological processes, including the immune response. Differential expression of human leukocyte antigen (HLA)-DRA mRNA between the UA and UV was due to unexpected HLA-DR+ cells migrating via the umbilical vessels into Wharton's jelly, more frequently in the UV. A significant proportion of these cells co-expressed CD45 and type I pro-collagen, and acquired CD163 or α-smooth muscle actin immunoreactivity in Wharton's jelly. Migrating cells were also found in the chorionic and stem villous vessels. Furthermore, the extent of migration increased with progression of gestation, but diminished in intrauterine growth restriction (IUGR). The observations herein strongly suggest that circulating foetal fibrocytes, routing via umbilical and placental vessels, are a reservoir for key cellular subsets in the placenta. This study reports fibrocytes in the human umbilical cord and placenta for the first time, and a novel role for both circulating foetal cells and the umbilical vessels in placental development, which is deranged in IUGR.  相似文献   

8.
S100A6, a calcium-binding protein also known as calcyclin, was detected in human umbilical cord by immunoblotting. Immunohistochemical studies showed an intensive reaction for S100A6 in the walls of vessels and Wharton's jelly. In the latter, S100A6 was found not only in the myofibroblasts but also in the ECM (extracellular matrix) surrounding these cells. Affinity chromatography of S100A6 resin indicated that Wharton's jelly contains some proteins that could bind to S100A6. Thus these novel results show the presence of S100A6 in umbilical cord and suggest the involvement of this protein in intra- and extra-cellular signalling pathways in this tissue.  相似文献   

9.
Edema, proteinuria, hypertension (EPH-gestosis), most commonly termed as pre-eclampsia, is the most common pregnancy-associated pathological syndrome. It is accompanied by a thorough remodelling of extracellular matrix in the umbilical cord tissues. It is commonly known that the presence of serum in culture medium strongly stimulates many functions of cells cultured in vitro. It was decided to check how the pre-eclamptic serum affects the fibroblast division in culture. Ki-67 is a protein present in proliferating cells and can be detected during all phases of the cell cycle (G1, S, G2/M) but not in resting (G0) cells. PCNA (proliferating cell nuclear antigen) is an intranuclear polypeptide whose synthesis rate is at its maximum during the S-phase of the cell cycle. The expression of Ki-67 and PCNA was measured by immunocytochemical methods and biosynthesis of DNA was evaluated by [14C]-thymidine incorporation. The activity of pre-eclamptic umbilical cord serum (UC-serum) was found to be distinctly lower in comparison to control one. The expression of Ki and PCNA in fibroblast cultures treated with pre-eclamptic serum was also distinctly lower. Also the incorporation of [14C]-thymidine to DNA was lower than in the cultures treated with control UC-serum. It may by concluded that pre-eclampsia reduces the mitogenic activity of the umbilical cord serum.  相似文献   

10.
The mechanisms by which the excess genetic material of chromosome 21 results in the dysmorphologic features of Down syndrome (DS) are largely unknown. It has been found that the extracellular matrix of nuchal skin of DS fetuses exhibits an higher content of hyaluronan (HA) compared to that of euploid fetuses. Since HA plays a central role in many morphogenetic processes during embryogenesis, an alteration in its metabolism could be involved in the pathogenesis of several structural defects of DS. The extracellular matrix of umbilical cord (UC) is the mammalian tissue with one of the highest content of HA. Therefore we sought to explore the quantitative HA modifications during gestation, tissue distribution and HA metabolism in euploid and DS UCs. Euploid UCs (n=28) and UCs from DS fetuses (n=13) were obtained after termination of pregnancy, spontaneous abortion, or at delivery. Quantitative and molecular size analysis were performed using HPLC and FPLC. Tissue distribution was visualized by immunohistochemistry. Gene expression for HA synthases (HAS) and hyaluronidases (HYAL) were quantified by real-time PCR techniques and HYAL activity was detected by zymography. In euploid UC only HA of a molecular weight of 1700 kDA was present while in DS UC an additional lower weight HA molecule of 1100 kDA was found. Immunohistochemistry showed a larger amount of Wharton's jelly HA in DS UCs than in euploid UC. Real-time PCR analysis showed that HAS 2 and HYAL 2 were expressed at significant levels in all specimens. A higher expression of HAS 2 and a lower expression of HYAL 2 was found in the Wharton's jelly of DS fetuses compared to that of euploid fetuses at 14 weeks of gestation. On the contrary, at term HYAL 2 expression was higher in DS specimens than in those from euploid fetuses. Zymographic studies showed a similar behavior with a lower HYAL activity at early gestation and a higher HYAL activity at term gestation in DS UCs compared to euploid specimens. Therefore we can conclude that HA is more represented in DS UCs than in euploid UCs. A complex alteration of the HA metabolism characterized by an increased synthesis of lower weight HA molecules is a peculiarity of DS UCs.  相似文献   

11.
Wharton's jelly (WJ) is a myxomatous substance surrounding the blood vessels of the umbilical cord. Proteoglycans (PGs) of Wharton's jelly have not been studied to date therefore it was decided to explore proteoglycan composition of this tissue. Proteoglycans were subjected to dissociative extraction with 4M guanidine hydrochloride containing Triton X-100 and protease inhibitors, purified by Q-Sepharose anion-exchange chromatography and lyophilised. They were analysed by gel filtration and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) before and after treatment with chondroitinase ABC. It was found that 1g of Wharton's jelly contains 2.43+/-0.63mg (n=10) of sulphated glycosaminoglycans (GAGs), reflecting the presence of proteoglycans. The proteoglycans were mainly substituted with chondroitin/dermatan sulphate (DS) chains. The predominant proteoglycan fraction included small proteoglycans with core proteins of 45 and 47kD, immunologically related to decorin (45 and 47kD) and biglycan (45kD). The expression of decorin core proteins was much higher than that of biglycan. Larger proteoglycans (core proteins of 90, 110, 220 and 260kD) were found in lower amounts. The most abundant of them (core protein of 260kD) was immunologically related to versican. Perlecan was not identified in Wharton's jelly. The study shows that Wharton's jelly contains mainly small chondroitin/dermatan sulphate proteoglycans, with decorin strongly predominating over biglycan. We suggest that an intensive expression of decorin is associated with very high content of its ligand, collagen.  相似文献   

12.
Wharton's jelly from the umbilical cord is a noncontroversial source of mesenchymal stem cells (WJMSCs) with high plasticity, proliferation rate and ability to differentiate towards multiple lineages. WJMSCs from different donors have been characterized for their osteogenic potential. Although there is large evidence of WJMSCs plasticity, recently scientific debate has focused on MSCs selection, establishing predictable elements to discriminate the cells with most promising osteoprogenitor cell potential.  相似文献   

13.
Biomechanical properties of the human umbilical cord   总被引:4,自引:0,他引:4  
Pennati G 《Biorheology》2001,38(5-6):355-366
The umbilical cord is a complex and fascinating structure that connects the fetus to the placenta and encases the umbilical vessels. The response of its tissues to mechanical loading due to fetal movements and uterine contractions is not well understood. The aim of this study is the evaluation of the mechanical properties of the main components of the human umbilical cord. Fresh umbilical cord specimens were collected from neonates born at term of the gestation and submitted to compliance tests. Furthermore, uniaxial tensile and stress-relaxation tests were performed on samples of umbilical vein and Wharton's jelly. Both materials exhibited nonlinear stress-strain response with increasing strain, increasing the elastic modulus (E(high) about 10-20 times E(low)) and significant viscoelastic behavior. In addition, anisotropy of the vein was observed. Although the circumferential properties of the vein (mean E(high) about 2.4 MPa) were similar to those after birth, the longitudinal stiffness of both materials was higher (mean E(high) over 10 MPa) and comparable to that of the ligaments. These findings suggest a mechanism of protection acting against excessive elongations of the cord, which could cause undue restriction of the umbilical vessel area and interference with the fetal blood circulation.  相似文献   

14.

Background  

The human umbilical cord contains mucoid connective tissue and fibroblast-like cells. These cells named Wharton's jelly cells, (WJCs) display properties similar to mesenchymal stem cells therefore representing a rich source of primitive cells to be potentially used in regenerative medicine.  相似文献   

15.
The improved method for HPLC determination of fatty acids was proposed. The chromatographic separation of p-bromophenacyl derivatives of fatty acids under a gradient elution was achieved at 40 °C with an RP-18 LiChroCART 5 column and organic mobile phase containing methanol, acetonitrile, water and TEAP buffer pH 5.6. The quantitative determination of those derivatives was performed at 254 nm. Preeclampsia, the most common pregnancy complication, did not affect triacylglycerol content in the umbilical cord Wharton's jelly in comparison to the control material. However, it changed the composition of fatty acids, bound to that lipid class. The method allows the determination of almost all fatty acids forming the investigated neutral lipid class, contained in a solid tissue sample. The use of TEAP buffer excluded precipitation and flow stoppage in the HPLC system. The method reduced time and costs and might be useful for all other lipid classes and different tissues.  相似文献   

16.
Stem cells are being evaluated in numerous human clinical trials and are commercially used in veterinary medicine to treat horses and dogs. Stem cell differentiation, homing to disease sites, growth and cytokine factor modulation, and low antigenicity contribute to their therapeutic success. Bone marrow and adipose tissue are the two most common sources of adult-derived stem cells in animals. We report on the existence of an alternative source of primitive, multipotent stem cells from the equine umbilical cord cellular matrix (Wharton's jelly). Equine umbilical cord matrix (EUCM) cells can be cultured, cryogenically preserved, and differentiated into osteo-, adipo-, chondrogenic, and neuronal cell lineages. These results identify a source of stem cells that can be non-invasively collected at birth and stored for future use in that horse or used as donor cells for treating unrelated horses.  相似文献   

17.
Human bone marrow mesenchymal stem cells (hBMMSCs) were shown to transform into tumor-associated fibroblasts (TAFs) when in the vicinity of breast cancer tumors and played an important role in tumor enhancement and metastasis. In early human development MSCs migrating from the yolk sac and aorta-gonad-mesonephros (AGM) via the umbilical cord to the placenta and back to the fetal bone marrow were shown to get trapped in the gelatinous Wharton's jelly of the umbilical cord. The common origin of the Wharton's jelly MSCs and the finally homed hBMMSCs prompted us to evaluate whether hWJSCs are also involved in TAF transformation. hWJSCs and hBMMSCs were grown in the presence of breast and ovarian cancer cell conditioned medium (MDA-TCM, TOV-TCM) for 30 days. No changes were observed in the hWJSCs but the hBMMSCs transformed from short to thin long fibroblasts, their proliferation rates increased and CD marker expression decreased. The transformed hBMMSCs showed positive staining for the tumor-associated markers FSP, VEGF, EGF, and Tn-C. Real-time PCR and multiplex luminex bead analysis showed upregulation of TAF-related genes (FSP, FAP, Tn-C, Tsp-1, EGF, bFGF, IL-6, α-SMA, VEGF, and TGF-β) for hBMMSCs with low expression for hWJSCs. The luciferase assay showed that hWJSCs previously exposed to MDA-TCM or TOV-TCM had no stimulatory growth effect on luciferase-tagged MDA or TOV cells unlike hBMMSCs. The results confirmed that hWJSCs do not transform to the TAF phenotype and may therefore not be associated with enhanced growth of solid tumors making them a safe MSC for cell based therapies.  相似文献   

18.
To date, various types of cells for seeding regenerative scaffolds have been used for bone tissue engineering. Among seed cells, the mesenchymal stem cells derived from human umbilical cord Wharton’s jelly (hUCMSCs) represent a promising candidate and hold potential for bone tissue engineering due to the the lack of ethical controversies, accessibility, sourced by non-invasive procedures for donors, a reduced risk of contamination, osteogenic differentiation capacities, and higher immunomodulatory capacity. However, the current culture methods are somewhat complicated and inefficient and often fail to make the best use of the umbilical cord (UC) tissues. Moreover, these culture processes cannot be performed on a large scale and under strict quality control. As a result, only a small quantity of cells can be harvested using the current culture methods. To solve these problems, we designed and evaluated an UC Wharton’s jelly repeated culture device. Using this device, hUCMSCs were obtained from the repeated cultures and their quantities and biological characteristics were compared. We found that using our culture device, which retained all tissue blocks on the bottom of the dish, the total number of obtained cells increased 15–20 times, and the time required for the primary passage was reduced. Moreover, cells harvested from the repeated cultures exhibited no significant difference in their immunophenotype, potential for multilineage differentiation, or proliferative, osteoinductive capacities, and final osteogenesis. The application of the repeated culture frame (RCF) not only made full use of the Wharton’s jelly but also simplified and specified the culture process, and thus, the culture efficiency was significantly improved. In summary, abundant hUCMSCs of dependable quality can be acquired using the RCF.  相似文献   

19.
Tissue formation and maintenance is regulated by various factors, including biological, physiological and physical signals transmitted between cells as well as originating from cell-substrate interactions. In our study, the osteogenic potential of mesenchymal stromal/stem cells isolated from umbilical cord Wharton's jelly (UC-MSCs) was investigated in relation to the substrate rigidity on polyacrylamide hydrogel (PAAM). Osteogenic differentiation of UC-MSCs was enhanced on stiff substrate compared to soft substrates, illustrating that the mechanical environment can play a role in differentiation of this type of cells. These results show that substrate stiffness can regulate UC-MSCs differentiation, and hence may have significant implications for design of biomaterials with appropriate mechanical properties for regenerative medicine.  相似文献   

20.
During fasting or aging of animals there is a decreased content of skin glycosaminoglycans (GAGs). It has been found that the skin of adult rats contains about 60% of GAGs found in the skin of young animals. Fasting of both groups of animals (young and adult) resulted in decrease of GAG content. However, GAG content in the skin of fasted young rats decreased by 30% and in fasted adult rats by 15% only, compared to fed animals, respectively. The mechanism for the phenomena is not known. We considered insulin-like growth factor-I (IGF-I) as a potential candidate involved in regulation of GAG biosynthesis in both experimental models of animals. Adult rat sera were found to contain about 75% of IGF-I recovered from young rat sera. Fasting of both groups of animals resulted in dramatic decrease in serum IGF-I levels to about 50% of initial values. Since IGF-I activity and IGF-I serum half-life depends on the level of specific IGF-binding proteins (IGFBPs) we determined (i) relationship between main groups of IGFBPs, namely high molecular weight binding proteins (HMWBPs) and low molecular weight binding proteins (LMWBPs) and (ii) the amounts of IGF-I bound to respective proteins in the sera of all experimental animals. Control young rat serum was found to contain about 90% of HMWBPs and about 10% of LMWBPs as determined by ligand binding assay. In contrast, control adult rat serum contained about 60% of HMWBPs and about 40% of LMWBPs. Fasting of both groups of animals resulted in significant increase in serum levels of LMWBPs. Control young rat serum was found to contain about 8% IGF-I bound to LMWBPs while serum of control adult rats contained 18% IGF-I bound to these proteins. In sera of fasted young animals however, about 75% of the bound IGF-I was recovered from LMWBPs (about 60% of total serum IGF-I) while in sera of fasted adult animals only about 56% of the bound IGF-I was recovered from LMWBPs (about 50% of total serum IGF-I). Evidence was provided that during fasting of both groups of animals there is a significant decrease in serum BP-3 and dramatic increase in serum BP-1 concentrations, compared to respective controls. However, the concentration of BP-1 in serum of fasted young rats was increased by about 60 fold while in serum of fasted adult rats only by about 10 fold, compared to respective control animals. Negative correlation between skin GAG content and LMWBPs derived IGF-I during fasting of young (r = - 0.943, p < 0.001) and adult ( r = - 0.571, p < 0.01) rats was found.The data presented suggest that the effects of aging and fasting on decreased skin GAG content may be due to induction of LMWBPs that are known to (i) inhibit IGF-I dependent function and (ii) increase clearance of IGF-I from circulation. However, the effects of fasting are distinct in respect to young and adult rats suggesting that mechanisms involved in regulation of IGF-I bioactivity during aging are more complex that during fasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号