首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MuB assembles into a polymer on DNA in the presence of ATP and is directly involved in the selection of an appropriate site on the Escherichia coli chromosome for the insertion of the bacteriophage Mu genome. We have developed an assay using fluorescently tagged proteins to monitor the polymeric state of MuB via fluorescence resonance energy transfer. We show that polymer assembly is initiated by the formation of an ATP-MuB complex. MuB then self-associates into a protomer before binding to DNA. Upon binding to DNA, a dramatic increase in energy transfer is observed, suggesting a conformational change within MuB. Polymer disassembly is much slower than assembly and is greatly stimulated by the MuA transposase. Additionally, MuB is readily exchanged between polymers, and ATP hydrolysis is directly coupled to polymer disassembly. Our data support a model in which a combination of rapid polymer assembly, MuA-mediated disassembly, followed by rapid reassembly of the polymer allows MuB to sample multiple DNA targets until an appropriate site is located for the insertion of the bacteriophage genome.  相似文献   

2.
MuB, a protein essential for replicative DNA transposition by the bacteriophage Mu, is an ATPase that assembles into a polymeric complex on DNA. We used total internal reflection fluorescence microscopy to observe the behavior of MuB polymers on single molecules of DNA. We demonstrate that polymer assembly is initiated by a stochastic nucleation event. After nucleation, polymer assembly occurs by a mechanism involving the sequential binding of small units of MuB. MuB that bound to A/T-rich regions of the DNA assembled into large polymeric complexes. In contrast, MuB that bound outside of the A/T-rich regions failed to assemble into large oligomeric complexes. Our data also show that MuB does not catalyze multiple rounds of ATP hydrolysis while remaining bound to DNA. Rather, a single ATP is hydrolyzed, then MuB dissociates from the DNA. Finally, we show that "capping" of the enhanced green fluorescent protein-MuB polymer ends with unlabeled MuB dramatically slows, but does not halt, dissociation. This suggests that MuB dissociation occurs through both an end-dependent mechanism and a slower mechanism wherein subunits dissociate from the polymer interior.  相似文献   

3.
Greene EC  Mizuuchi K 《Molecular cell》2002,10(6):1367-1378
The Mu transpososome can distinguish between proximal and distal DNA during the selection of a site for transposition. This phenomenon, termed target immunity, involves MuA-stimulated removal of MuB oligomers from sites near the Mu genome. Using a combination of ensemble and single-molecule fluorescence methods, we show that the MuA tetramer can stably associate with the DNA-bound MuB oligomer and is more efficient than monomeric MuA at stimulating the dissociation of MuB from DNA. In addition, we demonstrate that DNA looping is essential for efficient disassembly of the MuB oligomer. We propose a model in which the MuA tetramer forms a multivalent complex with the MuB oligomer and catalyzes the processive removal of MuB from DNA.  相似文献   

4.
M Yamauchi  T A Baker 《The EMBO journal》1998,17(18):5509-5518
MuB protein, an ATP-dependent DNA-binding protein, collaborates with Mu transposase to promote efficient transposition. MuB binds target DNA, delivers this target DNA segment to transposase and activates transposase''s catalytic functions. Using ATP-bound, ADP-bound and ATPase-defective MuB proteins we investigated how nucleotide binding and hydrolysis control the activities of MuB protein, important for transposition. We found that both MuB-ADP and MuB-ATP stimulate transposase, whereas only MuB-ATP binds with high affinity to DNA. Four different ATPase-defective MuB mutants fail to activate the normal transposition pathway, further indicating that ATP plays critical regulatory roles during transposition. These mutant proteins fall into two classes: class I mutants are defective in target DNA binding, whereas class II mutants bind target DNA, deliver it to transposase, but fail to promote recombination with this DNA. Based on these studies, we propose that the switch from the ATP- to ADP-bound form allows MuB to release the target DNA while maintaining its stimulatory interaction with transposase. Thus, ATP-hydrolysis by MuB appears to function as a molecular switch controlling how target DNA is delivered to the core transposition machinery.  相似文献   

5.
6.
Phage Mu transposes promiscuously, employing protein MuB for target capture. MuB forms stable filaments on A/T-rich DNA, and a correlation between preferred MuB binding and Mu integration has been observed. We have investigated the relationship between MuB-binding and Mu insertion into hot and cold Mu targets within the Escherichia coli genome. Although higher binding of MuB to select hot versus cold genes was seen in vivo, the hot genes had an average A/T content and were less preferred targets in vitro, whereas cold genes had higher A/T values and were more efficient targets in vitro. These data suggest that A/T-rich regions are unavailable for MuB binding, and that A/T content is not a good predictor of Mu behavior in vivo. Insertion patterns within two hot genes in vivo could be superimposed on those obtained in vitro in reactions employing purified MuA transposase and MuB, ruling out the contribution of a special DNA structure or additional host factors to the hot behavior of these genes. While A/T-rich DNA is a preferred target in vitro, a fragment made up exclusively of A/T was an extremely poor target. A continuous MuB filament assembled along the A/T region likely protects it against the action of MuA. Our results suggest that MuB binds E. coli DNA in an interspersed manner utilizing local A/T richness, and facilitates capture of these bound regions by the transpososome. Actual integration events are then directed to sites that are in proximity to MuB filaments but are themselves free of MuB.  相似文献   

7.
DNA transposases use a single active center to sequentially cleave the transposable element DNA and join this DNA to a target site. Recombination requires controlled conformational changes within the transposase to ensure that these chemically distinct steps occur at the right time and place, and that the reaction proceeds in the net forward direction. Mu transposition is catalyzed by a stable complex of MuA transposase bound to paired Mu DNA ends (a transpososome). We find that Mu transpososomes efficiently catalyze disintegration when recombination on one end of the Mu DNA is blocked. The MuB activator protein controls the integration versus disintegration equilibrium. When MuB is present, disintegration occurs slowly and transpososomes that have disintegrated catalyze subsequent rounds of recombination. In the absence of MuB, disintegration goes to completion. These results together with experiments mapping the MuA-MuB contacts during DNA joining suggest that MuB controls progression of recombination by specifically stabilizing a concerted transition to the “joining” configuration of MuA. Thus, we propose that MuB's interaction with the transpososome actively promotes coupled joining of both ends of the element DNA into the same target site and may provide a mechanism to antagonize formation of single-end transposition products.  相似文献   

8.
Sliding of STOP proteins on microtubules   总被引:5,自引:0,他引:5  
M Pabion  D Job  R L Margolis 《Biochemistry》1984,23(26):6642-6648
Microtubules are stabilized against cold temperature disassembly by 145-kilodalton proteins [stable tubule only polypeptides (STOPs)] that block the end-wise dissociation of subunits from the polymers. We describe here several kinetic parameters of the interaction of STOPs with microtubules. STOPs will bind to microtubules either during assembly of the polymer or at steady state. The addition appears random on the polymers and does not require the mediation of tubulin subunits. Tubulin subunits compete with microtubules for STOP binding, but binding to the polymers is apparently irreversible. We demonstrate that STOPs do not exchange measurably between polymers at steady state. Nonetheless, a displacement of STOPs within a single polymer is readily demonstrable. We have determined that the displacement is apparently due to a surface translocation, or "sliding", of STOPs on microtubules.  相似文献   

9.
T A Baker  M Mizuuchi  K Mizuuchi 《Cell》1991,65(6):1003-1013
The MuA and MuB proteins collaborate to mediate efficient transposition of the phage Mu genome into many DNA target sites. MuA (the transposase) carries out all the DNA cleavage and joining steps. MuB stimulates strand transfer by activating the MuA-donor DNA complex through direct protein-protein contact. The C-terminal domain of MuA is required for this MuA-MuB interaction. Activation of strand transfer occurs irrespective of whether MuB is bound to target DNA. When high levels of MuA generate a pool of free MuB (not bound to DNA) or when chemical modification of MuB impairs its ability to bind DNA, MuB still stimulates strand transfer. However, under these conditions, intramolecular target sites are used exclusively because of their close proximity to the MuA-MuB-donor DNA complex.  相似文献   

10.
M Mizuuchi  K Mizuuchi 《The EMBO journal》2001,20(23):6927-6935
Initiation of phage Mu DNA transposition requires assembly of higher order protein-DNA complexes called Mu transpososomes containing the two Mu DNA ends and MuA transposase tetramer. Mu transpososome assembly is highly regulated and involves multiple DNA sites for transposase binding, including a transpositional enhancer called the internal activation sequence (IAS). In addition, a number of protein cofactors participate, including the target DNA activator MuB ATPase. We investigated the impact of the assembly cofactors on the kinetics of transpososome assembly with the aim of deciphering the reaction steps that are influenced by the cofactors. The transpositional enhancer IAS appears to have little impact on the initial pairing of the two Mu end segments bound by MuA. Instead, it accelerates the post-synaptic conformational step(s) that converts the reversible complex to the stable transpososome. The transpososome assembly stimulation by MuB does not require its stable DNA binding activity, which appears critical for directing transposition to sites distant from the donor transposon.  相似文献   

11.
Prokaryotic cell division protein FtsZ, an assembling GTPase, directs the formation of the septosome between daughter cells. FtsZ is an attractive target for the development of new antibiotics. Assembly dynamics of FtsZ is regulated by the binding, hydrolysis, and exchange of GTP. We have determined the energetics of nucleotide binding to model apoFtsZ from Methanococcus jannaschii and studied the kinetics of 2'/3'-O-(N-methylanthraniloyl) (mant)-nucleotide binding and dissociation from FtsZ polymers, employing calorimetric, fluorescence, and stopped-flow methods. FtsZ binds GTP and GDP with K(b) values ranging from 20 to 300 microm(-1) under various conditions. GTP.Mg(2+) and GDP.Mg(2+) bind with slightly reduced affinity. Bound GTP and the coordinated Mg(2+) ion play a minor structural role in FtsZ monomers, but Mg(2+)-assisted GTP hydrolysis triggers polymer disassembly. Mant-GTP binds and dissociates quickly from FtsZ monomers, with approximately 10-fold lower affinity than GTP. Mant-GTP displacement measured by fluorescence anisotropy provides a method to test the binding of any competing molecules to the FtsZ nucleotide site. Mant-GTP is very slowly hydrolyzed and remains exchangeable in FtsZ polymers, but it becomes kinetically stabilized, with a 30-fold slower k(+) and approximately 500-fold slower k(-) than in monomers. The mant-GTP dissociation rate from FtsZ polymers is comparable with the GTP hydrolysis turnover and with the reported subunit turnover in Escherichia coli FtsZ polymers. Although FtsZ polymers can exchange nucleotide, unlike its eukaryotic structural homologue tubulin, GDP dissociation may be slow enough for polymer disassembly to take place first, resulting in FtsZ polymers cycling with GTP hydrolysis similarly to microtubules.  相似文献   

12.
Transposition of mobile genetic elements proceeds through a series of DNA phosphoryl transfer reactions, with multiple reaction steps catalyzed by the same set of active site residues. Mu transposase repeatedly utilizes the same active site DDE residues to cleave and join a single DNA strand at each transposon end to a new, distant DNA location (the target DNA). To better understand how DNA is manipulated within the Mu transposase-DNA complex during recombination, the impact of the DNA immediately adjacent to the Mu DNA ends (the flanking DNA) on the progress of transposition was investigated. We show that, in the absence of the MuB activator, the 3 '-flanking strand can slow one or more steps between DNA cleavage and joining. The presence of this flanking DNA strand in just one active site slows the joining step in both active sites. Further evidence suggests that this slow step is not due to a change in the affinity of the transpososome for the target DNA. Finally, we demonstrate that MuB activates transposition by stimulating the reaction step between cleavage and joining that is otherwise slowed by this flanking DNA strand. Based on these results, we propose that the 3 '-flanking DNA strand must be removed from, or shifted within, both active sites after the cleavage step; this movement is coupled to a conformational change within the transpososome that properly positions the target DNA simultaneously within both active sites and thereby permits joining.  相似文献   

13.
We present a method for the rapid determination of microtubule mean length in vitro. This method rests on mathematical analysis of the rate of polymer disassembly induced by the introduction of calcium at a known concentration. The rate of disassembly is monitored in our assay by filter trapping of residual microtubule polymers, which contain a radioactive tracer, [3H]GTP. We show that the assay is accurate and reproducible, by comparison with physical measurement of lengths from electron micrographs. Furthermore, we show that the assay can be used to determine rapid shifts in polymer length induced in polymer populations that exhibit "dynamic instability".  相似文献   

14.
Covalent linkage of ADP-ribose polymers to proteins is generally considered essential for the posttranslational modification of protein function by poly(ADP-ribosyl)ation. Here we demonstrate an alternative way by which ADP-ribose polymers may modify protein function. Using a highly stringent binding assay in combination with DNA sequencing gels, we found that ADP-ribose polymers bind noncovalently to a specific group of chromatin proteins, i.e., histones H1, H2A, H2B, H3, and H4 and protamine. This binding resisted strong acids, chaotropes, detergents, and high salt concentrations but was readily reversible by DNA. When the interactions of variously sized linear and branched polymer molecules with individual histone species were tested, the hierarchies of binding were branched polymers greater than long, linear polymers greater than short, linear polymers and H1 greater than H2A greater than H2B = H3 greater than H4. For histone H1, the target of polymer binding was the carboxy-terminal domain, which is also the domain most effective in inducing higher order structure of chromatin. Thus, noncovalent interactions may be involved in the modification of histone functions in chromatin.  相似文献   

15.
Mechanical work in cells is performed by specialized motor proteins that operate in a continuous mechanochemical cycle. Less complex, but still efficient, 'one-shot' motors evolved based on the assembly and disassembly of polymers. We review the mechanisms of pushing and pulling by actin and microtubule filaments and the organizational principles of actin networks. We show how these polymer force generators are used for the propulsion of intracellular pathogens, protrusion of lamellipodia and mitotic movements. We discuss several examples of cellular forces generated by the assembly and disassembly of polymer gels.  相似文献   

16.
BACKGROUND: Successful non-viral gene targeting requires vectors to meet two conflicting needs-strong binding to protect the genetic material during transit and weak binding at the target site to enable release. Responsive polymers could fulfil such requirements through the switching of states, e.g. the chain-extended coil to chain-collapsed globule phase transition that occurs at a lower critical solution temperature (LCST), in order to transport nucleic acid in one polymer state and release it in another. METHODS: The ability of new synthetic polycations based on poly(ethyleneimine) (PEI) with grafted neutral responsive poly(N-isopropylacrylamide) (PNIPAm) chains to condense DNA into particles with architectures varying according to graft polymer LCST was assessed using a combination of fluorescence spectroscopy, dynamic light scattering (DLS), zeta sizing, gel retardation and atomic force microscopy studies. Transfection assays were conducted under experimental conditions wherein the polymer components were able to cycle across their LCST. RESULTS: Two PEI-PNIPAm conjugate polymers with different LCSTs displayed coil-globule transitions when complexed to plasmid DNA, leading to variations in molecular architecture as shown by changes in emission maxima of an environment-sensitive fluorophore attached to the PNIPAm chains. Gel retardation assays demonstrated differences in electrophoretic mobilities of polymer-DNA complexes with temperatures below and above polymer LCSTs. Atomic force micrographs showed changes in the structures of polymer-DNA complexes for a polymer undergoing a phase transition around body temperature but not for the polymer with LCST outside this range. Transfection experiments in C2C12 and COS-7 cells demonstrated that the highest expression of transgene occurred in an assay that involved a 'cold-shock' below polymer LCST during transfection. CONCLUSIONS: Designed changes in thermoresponsive polycation vector configuration via temperature-induced phase transitions enhanced transgene expression. The results indicate that changes in molecular architecture induced by a carefully chosen stimulus during intracellular trafficking can be used to enhance gene delivery.  相似文献   

17.
Division site selection is achieved in bacteria by different mechanisms, one of them being nucleoid occlusion, which prevents Z-ring assembly nearby the chromosome. Nucleoid occlusion in E. coli is mediated by SlmA, a sequence specific DNA binding protein that antagonizes FtsZ assembly. Here we show that, when bound to its specific target DNA sequences (SBS), SlmA reduces the lifetime of the FtsZ protofilaments in solution and of the FtsZ bundles when located inside permeable giant vesicles. This effect appears to be essentially uncoupled from the GTPase activity of the FtsZ protofilaments, which is insensitive to the presence of SlmA·SBS. The interaction of SlmA·SBS with either FtsZ protofilaments containing GTP or FtsZ oligomers containing GDP results in the disassembly of FtsZ polymers. We propose that SlmA·SBS complexes control the polymerization state of FtsZ by accelerating the disassembly of the FtsZ polymers leading to their fragmentation into shorter species that are still able to hydrolyze GTP at the same rate. SlmA defines therefore a new class of inhibitors of the FtsZ ring different from the SOS response regulator SulA and from the moonlighting enzyme OpgH, inhibitors of the GTPase activity. SlmA also shows differences compared with MinC, the inhibitor of the division site selection Min system, which shortens FtsZ protofilaments by interacting with the GDP form of FtsZ.  相似文献   

18.
P Liu  AJ Boyle  Y Lu  RM Reilly  MA Winnik 《Biomacromolecules》2012,13(9):2831-2842
We report the synthesis and characterization of metal-chelating polymers (MCPs) with a terminal biotin and a polyacrylamide backbone harboring multiple diethylenetriaminepentaacetic acid (DTPA) chelating sites. These polymers are conjugated to a streptavidin (SAv)-modified Fab fragment of trastuzumab (tmFab) and subsequently complexed with (111)In through DTPA. Trastuzumab has specific targeting ability toward human epidermal growth factor receptor-2 (HER2), which is overexpressed on some types of breast cancer cells and ovarian cancer cells. (111)In can generate Auger electrons which cause lethal DNA double strand breaks. The radioimmunoconjugates (RICs) were designed to target HER2 overexpressing cancer cells and carry multiple copies of (111)In to these cells. The mole maximum specific activities of these polymers were investigated by loading the polymers with (111)In at an increasing (111)In to polymer ratio. The polymers show 55-fold to 138-fold higher maximum specific activity than DTPA modified tmFab-SAv. Moreover, the HER2 immunoreactivities of these RICs were evaluated by measuring their specific binding ability toward HER2 overexpressing SKOV-3 ovarian cancer cells. The results demonstrate that although in the presence of polymer there is increased nonspecific binding, HER2 targeting ability was retained, ensuring the radionuclide delivery ability of these RICs.  相似文献   

19.
FtsZ is the first protein recruited to the bacterial division site, where it forms the cytokinetic Z ring. We have determined the functional energetics of FtsZ assembly, employing FtsZ from the thermophilic Archaea Methanococcus jannaschii bound to GTP, GMPCPP, GDP, or GMPCP, under different solution conditions. FtsZ oligomerizes in a magnesium-insensitive manner. FtsZ cooperatively assembles with magnesium and GTP or GMPCPP into large polymers, following a nucleated condensation polymerization mechanism, under nucleotide hydrolyzing and non-hydrolyzing conditions. The effect of temperature on the critical concentration indicates polymer elongation with an apparent heat capacity change of -800 +/- 100 cal mol-1 K-1 and positive enthalpy and entropy changes, compatible with axial hydrophobic contacts of each FtsZ in the polymer, and predicts optimal polymer stability near 75 degrees C. Assembly entails the binding of one medium affinity magnesium ion and the uptake of one proton per FtsZ. Interestingly, GDP- or GMPCP-liganded FtsZ cooperatively form helically curved polymers, with an elongation only 1-2 kcal mol-1 more unfavorable than the straight polymers formed with nucleotide triphosphate, suggesting a physiological requirement for FtsZ polymerization inhibitors. This GTP hydrolysis switch should provide the basic properties for FtsZ polymer disassembly and its functional dynamics.  相似文献   

20.
Assembly of the functional tetrameric form of Mu transposase (MuA protein) at the two att ends of Mu depends on interaction of MuA with multiple att and enhancer sites on supercoiled DNA, and is stimulated by MuB protein. The N-terminal domain I of MuA harbours distinct regions for interaction with the att ends and enhancer; the C-terminal domain III contains separate regions essential for tetramer assembly and interaction with MuB protein (IIIα and IIIβ, respectively). Although the central domain II (the ‘DDE’ domain) of MuA harbours the known catalytic DDE residues, a 26 amino acid peptide within IIIα also has a non-specific DNA binding and nuclease activity which has been implicated in catalysis. One model proposes that active sites for Mu transposition are assembled by sharing structural/catalytic residues between domains II and III present on separate MuA monomers within the MuA tetramer. We have used substrates with altered att sites and mixtures of MuA proteins with either wild-type or altered att DNA binding specificities, to create tetrameric arrangements wherein specific MuA subunits are nonfunctional in II, IIIα or IIIβ domains. From the ability of these oriented tetramers to carry out DNA cleavage and strand transfer we conclude that domain IIIα or IIIβ function is not unique to a specific subunit within the tetramer, indicative of a structural rather than a catalytic function for domain III in Mu transposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号