首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA-mediated RNA cleavage events are being increasingly exploited to disrupt RNA function, an important objective in post-genomic biology. RNase P, a ribonucleoprotein enzyme that catalyzes the removal of 5'-leaders from precursor tRNAs, has previously been utilized for sequence-specific cleavage of cellular RNAs. In one of these strategies, borne out in bacterial and mammalian cell culture, an external guide sequence (EGS) RNA base-paired to a target RNA makes the latter a substrate for endogenous RNase P by rendering the bipartite target RNA-EGS complex a precursor tRNA structural mimic. In this study, we first obtained evidence that four different mesophilic and thermophilic archaeal RNase P holoenzymes, reconstituted in vitro using their respective constituent RNA and protein subunits, recognize and cleave such substrate-EGS complexes. We further demonstrate that these EGSs engage in multiple rounds of substrate recognition while assisting archaeal RNase P-mediated cleavage of a target RNA in vitro. Taken together, the EGS-based approach merits consideration as a gene knockdown tool in archaea.  相似文献   

2.
Walker SC  Engelke DR 《Cell》2008,135(3):412-414
In bacteria, archaea, and the eukaryote nucleus, the endonuclease ribonuclease P (RNase P) is composed of a catalytic RNA that is assisted by protein subunits. Holzmann et al. (2008) now provide evidence that the human mitochondrial RNase P is an entirely protein-based enzyme.  相似文献   

3.
RNase P RNA mediated cleavage: substrate recognition and catalysis   总被引:1,自引:0,他引:1  
Kirsebom LA 《Biochimie》2007,89(10):1183-1194
The universally conserved endoribonuclease P consists of one RNA subunit and, depending on its origin, a variable number of protein subunits. RNase P is involved in the processing of a large variety of substrates in the cell, the preferred substrate being tRNA precursors. Cleavage activity does not require the presence of the protein subunit(s) in vitro. This is true for both prokaryotic and eukaryotic RNase P RNA suggesting that the RNA based catalytic activity has been preserved during evolution. Progress has been made in our understanding of the contribution of residues and chemical groups both in the substrate as well as in RNase P RNA to substrate binding and catalysis. Moreover, we have access to two crystal structures of bacterial RNase P RNA but we still lack the structure of RNase P RNA in complex with its substrate and/or the protein subunit. Nevertheless, these recent advancements put us in a new position to study the way and nature of interactions between in particular RNase P RNA and its substrate. In this review I will discuss various aspects of the RNA component of RNase P with an emphasis on our current understanding of the interaction between RNase P RNA and its substrate.  相似文献   

4.
5.
6.
Ribonucleoproteins (RNP) are involved in many essential processes in life. However, the roles of RNA and protein subunits in an RNP complex are often hard to dissect. In many RNP complexes, including the ribosome and the Group II introns, one main function of the protein subunits is to facilitate RNA folding. However, in other systems, the protein subunits may perform additional functions, and can affect the biological activities of the RNP complexes. In this review, we use ribonuclease P (RNase P) as an example to illustrate how the protein subunit of this RNP affects different aspects of catalysis. RNase P plays an essential role in the processing of the precursor to transfer RNA (pre-tRNA) and is found in all three domains of life. While every cell has an RNase P (ribonuclease P) enzyme, only the bacterial and some of the archaeal RNase P RNAs (RNA component of RNase P) are active in vitro in the absence of the RNase P protein. RNase P is a remarkable enzyme in the fact that it has a conserved catalytic core composed of RNA around which a diverse array of protein(s) interact to create the RNase P holoenzyme. This combination of highly conserved RNA and altered protein components is a puzzle that allows the dissection of the functional roles of protein subunits in these RNP complexes.  相似文献   

7.
8.
9.
Ribonuclease P (RNase P) is a ubiquitous endonuclease that catalyses the maturation of the 5' end of transfer RNA (tRNA). Although it carries out a biochemically simple reaction, RNase P is a complex ribonucleoprotein particle composed of a single large RNA and at least one protein component. In bacteria and some archaea, the RNA component of RNase P can catalyse tRNA maturation in vitro in the absence of proteins. The discovery of the catalytic activity of the bacterial RNase P RNA triggered numerous mechanistic and biochemical studies of the reactions catalysed by the RNA alone and by the holoenzyme and, in recent years, structures of individual components of the RNase P holoenzyme have been determined. The goal of the present review is to summarize what is known about the bacterial RNase P, and to bring together the recent structural results with extensive earlier biochemical and phylogenetic findings.  相似文献   

10.
Li D  Willkomm DK  Schön A  Hartmann RK 《Biochimie》2007,89(12):1528-1538
Ribonuclease P (RNase P) is a ribonucleoprotein enzyme that generates the mature 5' ends of tRNAs. Ubiquitous across all three kingdoms of life, the composition and functional contributions of the RNA and protein components of RNase P differ between the kingdoms. RNA-alone catalytic activity has been reported throughout bacteria, but only for some archaea, and only as trace activity for eukarya. Available information for RNase P from photosynthetic organelles points to large differences to bacterial as well as to eukaryotic RNase P: for spinach chloroplasts, protein-alone activity has been discussed; for RNase P from the cyanelle of the glaucophyte Cyanophora paradoxa, a type of organelle sharing properties of both cyanobacteria and chloroplasts, the proportion of protein was found to be around 80% rather than the usual 10% in bacteria. Furthermore, the latter RNase P was previously found catalytically inactive in the absence of protein under a variety of conditions; however, the RNA could be activated by a cyanobacterial protein, but not by the bacterial RNase P protein from Escherichia coli. Here we demonstrate that, under very high enzyme concentrations, the RNase P RNA from the cyanelle of C. paradoxa displays RNA-alone activity well above the detection level. Moreover, the RNA can be complemented to a functional holoenzyme by the E. coli RNase P protein, further supporting its overall bacterial-like architecture. Mutational analysis and domain swaps revealed that this A,U-rich cyanelle RNase P RNA is globally optimized but conformationally unstable, since changes as little as a single point mutation or a base pair identity switch at positions that are not part of the universally conserved catalytic core led to a complete loss of RNA-alone activity. Likely related to this low robustness, extensive structural changes towards an E. coli-type P5-7/P15-17 subdomain as a canonical interaction site for tRNA 3'-CCA termini could not be coaxed into increased ribozyme activity.  相似文献   

11.
12.
Ribonuclease P (RNase P), is a ribonucleoprotein complex that catalyzes the site-specific cleavage of pre-tRNA and a wide variety of other substrates. Although RNase P RNA is the catalytic subunit of the holoenzyme, the protein subunit plays a critical role in substrate binding. Thus, RNase P is an excellent model system for studying ribonucleoprotein function. In this review we describe methods applied to the in vitro study of substrate recognition by bacterial RNase P, covering general considerations of reaction conditions, quantitative measurement of substrate binding equilibria, enzymatic and chemical protection, cross-linking, modification interference, and analysis of site-specific substitutions. We describe application of these methods to substrate binding by RNase P RNA alone and experimental considerations for examining the holoenzyme. The combined use of these approaches has shown that the RNA and protein subunits cooperate to bind different portions of the substrate structure, with the RNA subunit predominantly interacting with the mature domain of tRNA and the protein interacting with the 5(') leader sequence. However, important questions concerning the interface between the two subunits and the coordination of RNA and protein subunits in binding and catalysis remain.  相似文献   

13.
RNase P processes the 5'-end of tRNAs. An essential catalytic RNA has been demonstrated in Bacteria, Archaea and the nuclei of most eukaryotes; an organism-specific number of proteins complement the holoenzyme. Nuclear RNase P from yeast and humans is well understood and contains an RNA, similar to the sister enzyme RNase MRP. In contrast, no protein subunits have yet been identified in the plant enzymes, and the presence of a nucleic acid in RNase P is still enigmatic. We have thus set out to identify and characterize the subunits of these enzymes in two plant model systems. Expression of the two known Arabidopsis MRP RNA genes in vivo was verified. The first wheat MRP RNA sequences are presented, leading to improved structure models for plant MRP RNAs. A novel mRNA encoding the central RNase P/MRP protein Pop1p was identified in Arabidopsis, suggesting the expression of distinct protein variants from this gene in vivo. Pop1p-specific antibodies precipitate RNase P activity and MRP RNAs from wheat extracts. Our results provide evidence that in plants, Pop1p is associated with MRP RNAs and with the catalytic subunit of RNase P, either separately or in a single large complex.  相似文献   

14.
Although archaeal RNase P RNAs are similar in both sequence and structure to those of Bacteria rather than eukaryotes, and heterologous reconstitution between the Bacillus subtilis RNase P protein and some archaeal RNase P RNAs has been demonstrated, no archaeal protein sequences with similarity to any known bacterial RNase P protein subunit have been identified, and the density of Methanothermobacter thermoautotrophicus RNase P in Cs2SO4 (1.42 g/mL) is inconsistent with a single small bacterial-like protein subunit. Four hypothetical open reading frames (MTH11, MTH687, MTH688, and MTH1618) were identified in the genome of M. thermoautotrophicus that have sequence similarity to four of the nine Saccharomyces cerevisiae RNase P protein subunits: Pop4p, Pop5p, Rpp1p, and Rpr2p, respectively. Polyclonal antisera generated to recombinant Mth11p, Mth687p, Mth688p, and Mth1618p each recognized a protein of the predicted molecular weight in western blots of partially purified M. thermoautotrophicus RNase P, and immunoprecipitated RNase P activity from the same partially purified preparation. RNase P in Archaea is therefore composed of an RNA subunit similar to bacterial RNase P RNA and multiple protein subunits similar to those in the eukaryotic nucleus.  相似文献   

15.
A requisite step in the biosynthesis of tRNA is the removal of 5' leader sequences from tRNA precursors. We have detected an RNase P activity in yeast mitochondrial extracts that can carry out this reaction on a homologous precursor tRNA. This mitochondrial RNase P was sensitive to both micrococcal nuclease and protease, demonstrating that it requires both a nucleic acid and protein for activity. The presence of RNase P activity in vitro directly correlated with the presence of a locus on yeast mitochondrial DNA previously shown by genetic and biochemical studies to be required for tRNA maturation. The product of the locus, the 9S RNA, and this newly described mitochondrial RNase P activity cofractionated, providing further evidence that the 9S RNA is the RNA component of yeast mitochondrial RNase P.  相似文献   

16.
Ribonuclease P (RNase P) is an essential enzyme that processes the 5' leader sequence of precursor tRNA. Eubacterial RNase P is an RNA enzyme, while its eukaryotic counterpart acts as catalytic ribonucleoprotein, consisting of RNA and numerous protein subunits. To study the latter form, we reconstitute human RNase P activity, demonstrating that the subunits H1 RNA, Rpp21, and Rpp29 are sufficient for 5' cleavage of precursor tRNA. The reconstituted RNase P precisely delineates its cleavage sites in various substrates and hydrolyzes the phosphodiester bond. Rpp21 and Rpp29 facilitate catalysis by H1 RNA, which seems to require a phylogenetically conserved pseudoknot structure for function. Unexpectedly, Rpp29 forms a catalytic complex with M1 RNA of E. coli RNase P. The results uncover the core components of eukaryotic RNase P, reveal its evolutionary origin in translation, and provide a paradigm for studying RNA-based catalysis by other nuclear and nucleolar ribonucleoprotein enzymes.  相似文献   

17.
Ribonuclease P (RNase P) is an ancient and essential endonuclease that catalyses the cleavage of the 5' leader sequence from precursor tRNAs (pre-tRNAs). The enzyme is one of only two ribozymes which can be found in all kingdoms of life (Bacteria, Archaea, and Eukarya). Most forms of RNase P are ribonucleoproteins; the bacterial enzyme possesses a single catalytic RNA and one small protein. However, in archaea and eukarya the enzyme has evolved an increasingly more complex protein composition, whilst retaining a structurally related RNA subunit. The reasons for this additional complexity are not currently understood. Furthermore, the eukaryotic RNase P has evolved into several different enzymes including a nuclear activity, organellar activities, and the evolution of a distinct but closely related enzyme, RNase MRP, which has different substrate specificities, primarily involved in ribosomal RNA biogenesis. Here we examine the relationship between the bacterial and archaeal RNase P with the eukaryotic enzyme, and summarize recent progress in characterizing the archaeal enzyme. We review current information regarding the nuclear RNase P and RNase MRP enzymes in the eukaryotes, focusing on the relationship between these enzymes by examining their composition, structure and functions.  相似文献   

18.
Smith JK  Hsieh J  Fierke CA 《Biopolymers》2007,87(5-6):329-338
Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) complex that catalyzes the metal-dependent maturation of the 5' end of precursor tRNAs (pre-tRNAs) in all organisms. RNase P is comprised of a catalytic RNA (P RNA), and at least one essential protein (P protein). Although P RNA is the catalytic subunit of the enzyme and is active in the absence of P protein under high salt concentrations in vitro, the protein is still required for enzyme activity in vivo. Therefore, the function of the P protein and how it interacts with both P RNA and pre-tRNA have been the focus of much ongoing research. RNA-protein interactions in RNase P serve a number of critical roles in the RNP including stabilizing the structure, and enhancing the affinity for substrates and metal ions. This review examines the role of RNA-protein interactions in bacterial RNase P from both structural and mechanistic perspectives.  相似文献   

19.
An essential protein-binding domain of nuclear RNase P RNA   总被引:5,自引:3,他引:2  
Eukaryotic RNase P and RNase MRP are endoribonucleases composed of RNA and protein subunits. The RNA subunits of each enzyme share substantial secondary structural features, and most of the protein subunits are shared between the two. One of the conserved RNA subdomains, designated P3, has previously been shown to be required for nucleolar localization. Phylogenetic sequence analysis suggests that the P3 domain interacts with one of the proteins common to RNase P and RNase MRP, a conclusion strengthened by an earlier observation that the essential domain can be interchanged between the two enzymes. To examine possible functions of the P3 domain, four conserved nucleotides in the P3 domain of Saccharomyces cerevisiae RNase P RNA (RPR1) were randomized to create a library of all possible sequence combinations at those positions. Selection of functional genes in vivo identified permissible variations, and viable clones that caused yeast to exhibit conditional growth phenotypes were tested for defects in RNase P RNA and tRNA biosynthesis. Under nonpermissive conditions, the mutants had reduced maturation of the RPR1 RNA precursor, an expected phenotype in cases where RNase P holoenzyme assembly is defective. This loss of RPR1 RNA maturation coincided, as expected, with a loss of pre-tRNA maturation characteristic of RNase P defects. To test whether mutations at the conserved positions inhibited interactions with a particular protein, specific binding of the individual protein subunits to the RNA subunit was tested in yeast using the three-hybrid system. Pop1p, the largest subunit shared by RNases P and MRP, bound specifically to RPR1 RNA and the isolated P3 domain, and this binding was eliminated by mutations at the conserved P3 residues. These results indicate that Pop1p interacts with the P3 domain common to RNases P and MRP, and that this interaction is critical in the maturation of RNase P holoenzyme.  相似文献   

20.
Initial steps in the synthesis of functional tRNAs require 5'- and 3'-processing of precursor tRNAs (pre-tRNAs), which in yeast mitochondria are achieved by two endonucleases, RNase P and RNase Z. In this study, using a combination of detergent-free Blue Native Gel Electrophoresis, proteomics and in vitro testing of pre-tRNA maturation, we reveal the physical association of these plus other mitochondrial activities in a large, stable complex of 136 proteins. It contains a total of seven proteins involved in RNA processing including RNase P and RNase Z, five out of six subunits of the mitochondrial RNA degradosome, components of the fatty acid synthesis pathway, translation, metabolism and protein folding. At the RNA level, there are the small and large rRNA subunits and RNase P RNA. Surprisingly, this complex is absent in an oar1Δ deletion mutant of the type II fatty acid synthesis pathway, supporting a recently published functional link between pre-tRNA processing and the FAS II pathway--apparently by integration into a large complex as we demonstrate here. Finally, the question of mt-RNase P localization within mitochondria was investigated, by GFP-tracing of a known protein subunit (Rpm2p). We find that about equal fractions of RNase P are soluble versus membrane-attached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号