首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
含有抗白粉病基因的黑麦染色体小片段向小麦的转移   总被引:7,自引:0,他引:7  
符书兰  唐宗祥  张怀琼  杨足君  任正隆 《遗传》2006,28(11):1396-1400
利用感白粉病的小麦品种绵阳11的纯系和黑麦自交系R12杂交, 在其单体附加系自交后代的BC1F5株系中选择小麦-黑麦异源易位系。根据已报道的黑麦特异重复序列pSc20H设计了一对特异引物, 用PCR方法鉴定了300个单体附加系的自交BC1F5株系,发现其中70个株系含有黑麦染色体成分。一个来源于6R单体附加系的小麦株系96Ⅱ691-830-98表现了对白粉病的高度抗性, PCR方法鉴定证明其含有黑麦染色体成分。对该株系作进一步的基因组原位杂交(GISH)鉴定, 证明它的一对染色体的端部含有黑麦染色体的小片段。这一结果指出, 含有抗白粉病基因的黑麦染色体6R小片段被引入了小麦。研究表明利用单体附加诱导染色体小片段易位是一种有效的方法。利用PCR和GISH原位杂交相结合的方法可提高检测外源染色体小片段的准确性和选择效率。  相似文献   

2.
In tetraploid rye with single-substitution wheat chromosomes - 1A, 2A, 5A, 6A, 7A, 3B, 5B, 7B - chromosome pairing was analysed at metaphase I in PMCs with the C-banding method. The frequency of univalents of chromosome 1A was considerably higher than that of the other four wheat chromosomes of genome A (6A, 5A, 7A and 2A). Among chromosomes of genome B, the lowest mean frequency of univalents was observed for chromosome 5B. In monosomic lines, wheat chromosomes 1A, 2A, 5A, 6A, 7A and 5B paired with rye homoeologues most often in rod bivalents and in chain quadrivalents (also including 3B). The 47% pairing of 5B-5R chromosomes indicate that the rye genomes block the suppressor Ph1 gene activity. In monosomic plants with chromosomes 5A, 2A, 6A, 7A and 5B, a low frequency of rye univalents was observed. It was also found that the wheat chromosomes influenced the pairing of rye genome chromosomes, as well as the frequency of ring and rod bivalents and tri- and quadrivalents. However, the highest number of terminal chiasmata per chromosome occurred in the presence of chromosomes 5A and 2A, and the lowest - in the presence of chromosomes 3B and 7B. In the presence of chromosome 5B, the highest frequency of bivalents was observed. The results of the present study show that the rye genome is closer related to the wheat genome A of than to genome B. The high pairing of wheat-rye chromosomes, which occurs in tetraploid rye with substitution wheat chromosomes, indicates that there is a high probability of incorporating wheat chromosome segments into rye chromosomes.  相似文献   

3.
钟莉 《植物研究》2006,26(4):442-446
应用原位杂交技术结合染色体组型分析方法,对两个小麦-黑麦异源双代换系5R/5A和6R/6A杂交后代的遗传进行了研究,探讨同祖染色体配对的可能性并获得小麦-黑麦易位系。实验中对杂种F1代植株减数分裂各时期的花粉母细胞染色体行为进行分析,结果发现有22.91%的花粉母细胞中黑麦染色体与小麦染色体发生同祖配对。F2代通过C-分带、原位杂交鉴定,在45株中检测到9株易位,易位频率为20%,是目前报道易位频率最高的。染色体易位有的来源于同祖配对交换,有的来源于单价体错分裂或断裂的重建。  相似文献   

4.
孙仲平  王占斌  徐香玲  李集临 《遗传学报》2004,31(11):1268-1274
将中国春-黑麦(1R-7R)二体附加系与中国春-2C(Aegilops cylindrica)二体附加系杂交,获得F1,对F1体细胞染色体进行C分带鉴定和花粉母细胞减数分裂行为的观察与分析,发现减数分裂行为异常。对自交获得的430株F2进行单株染色体C分带和荧光原位分子杂交鉴定,检测到易位、缺失、等臂染色体、双着丝点染色体等染色体畸变类型。此外还检测到2C与小麦2A、2B、2D染色体的二体或单体自发代换系。杂交F。染色体畸变的规律与频率如下:研究共得到含黑麦染色体的变异22株,变异频率为5,1%。其中含黑麦染色体的易位系为10株,占2,3%;缺失12株,占2.79%;黑麦的等臂染色体3株,占O.7%。易位染色体既有含小麦着丝点的(大部分),也含有黑麦着丝点的(仅1例)。黑麦的染色体畸变中,发生于不同同祖群的频率不同,1R为5个,2R为3个;3R为1个;4R为3个;5R为6个;6R为4个。易位多为端部易位。共鉴定出小麦的缺失系54株,其中A基因组有27个,占6.27%;B基因组有20个,占4,65%;D基因组有7个,占1.66%。对杀配子染色体对小麦及黑麦不同同祖群染色体作用的差异性及作用特点进行了探讨。  相似文献   

5.
利用两个小麦-黑麦异源双代换系DS 5A/5R与DS 6A/6R杂交,探讨同祖染色体配对的可能性与创制小麦黑麦异源易位系.在方法上对杂种F1的减数分裂行为进行研究,观察5R与5A、6R与6A配对频率,探讨同祖染色体配对规律.实验结果看到杂交F1减数分裂中有22.91%的花粉母细胞有小麦染色体(ABD组)与黑麦染色体(R组)发生同祖配对.在F2及以后世代,通过染色体C分带、原位杂交检测,选择小麦-黑麦易位系.在F2代的45株中检测到9株有易位,易位频率为20%,是目前小麦-黑麦染色体易位频率最高的.染色体易位有的来源于同祖配对的交换,有的来源于单价体错分裂或断裂的重建.  相似文献   

6.
黑麦碱基因(Sec–1)表达缺失的1RS/1BL易位系的鉴定   总被引:5,自引:0,他引:5  
晏本菊  张怀琼  任正隆 《遗传》2005,27(4):513-517
用改良的Giemsa C-带技术、DNA原位杂交和酸性聚丙烯酰胺凝胶电泳(A-PAGE)对来源于小麦品种绵阳11与不同黑麦自交系远缘杂交获得的高代株系(BC1F7)的染色体结构和醇溶蛋白进行了研究。结果发现,在鉴定的200个株系中,有45个株系经C-带和A-PAGE检测均一致地发现它们含有一对1RS /1BL易位染色体,而一个株系843-1-1,C-带鉴定、原位杂交结果均证明它含有一对1RS/1BL易位染色体,但A-PAGE醇溶蛋白图谱却不具有黑麦1RS染色体臂的黑麦碱特征带,而表达出既不同于黑麦碱又不同于亲本绵阳11的醇溶蛋白带型。这一结果表明,利用不同的黑麦亲本资源,可以获得黑麦碱基因Sec-1表达缺失的新的1RS/1BL易位系。这种新的1RS/1BL易位系缺失了影响小麦品质的黑麦碱蛋白,因此是进一步研究1RS/1BL 易位对小麦品质影响的珍贵材料。研究指出,在利用外源基因的植物育种中,外源种供体材料的遗传多样性是值得重视的基因资源。  相似文献   

7.
黑麦6R抗白粉病基因向小麦的渗进与鉴定   总被引:2,自引:0,他引:2  
张文俊 Snap.  JW 《遗传学报》1999,26(5):563-570
为了将黑麦6R染色体上抗小麦白粉病的基因导入小麦,选用了一个6R/6D代换系M24为亲本之一,分别与小麦栽培品种和第6部分同源群缺体系杂交,杂种出现6R或/或6A,6B,6D单,双或三单体等各种情况,取其花药进行培养,共获得241个再生植株,对其中32个抗白粉病的花粉植株经染色体计数,C-分带,基因组原位杂交,同工酶等电聚焦电泳和或/RFLP分子标记检测,发现有6株仍保持为6R/6D代换系,有10  相似文献   

8.
The 1BL.1RS translocations between wheat (Triticum aestivum L.) and rye (Secale cereale L.) are widely used in bread wheat breeding programs, but all modern wheat cultivars with the 1BL.1RS have shown genetic vulnerability due to one rye source – a German cultivar, Petkus. We have developed, a new 1BL.1RS wheat-rye translocation line from the backcross of the F1 hybrid of wheat cv. Olmil and rye cv. Paldanghomil, both cultivars from Korea. The GISH technique was applied to identify the presence of rye chromatin in 467 BC1F6 lines selected from 77 BC1F5 lines. Only one line, Yw62–11, showed wheat-rye translocated chromosomes, with a somatic chromosome number of 2n=42. C-banding patterns revealed that the translocated chromosome was 1BL.1RS, showing prominent bands in the terminal and sub-terminal regions of the short arm as well as in the centromeric region and terminal region of the long arm. This new 1BL.1RS translocation line formed 21 bivalents like common wheat at meiotic metaphase I, thereby showing complete homology. Received: 28 February 2001 / Accepted: 17 April 2001  相似文献   

9.
Structural alterations of chromosomes are often found in wheat-rye hybrids. In the majority of cases modifications are observed for rye chromosomes, yet chromosome aberration cases are described for wheat, including the progeny of Triticum aestivum disomic and monosomic addition lines. Since wheat-rye substitution and translocation lines are the source of rye chromatin in wheat breeding programs, the information on possible chromosome changes in the genomes of introgressive forms is important. Chromosome behavior in F1 meiosis and chromosomal composition of F2 karyotypes for double monosomics 1Rv-1A were studied by applying C-banding, genomic in situ hybridisation (GISH) using rye genomic DNA, and sequential in situ hybridization using repetitive sequences pAs1, pSc119.2 and centromere specific pAet-06 as probes. The double monosomics 1Rv-1A were obtained by crossing of disomic substitution line with chromosome 1A replaced by Secale cereale 1Rv in the bread wheat Saratovskaya 29 (S29) background with S29. The results indicated a high frequency of bipolar chromosome 1Rv orientation, as compared to 1A, at metaphase I (MI) (58.6 and 34.7 % of meiocytes, respectively), and, at anaphase I (AI), chromatid segregation of 1Rv compared to 1A (70.53 and 32.14 % of meiocytes, respectively). In few cases desynapsis of wheat homologues was observed, at AI, the chromosomes randomly distributed between the poles or underwent chromatid segregation. At AI, the two wheat homologues separated onto sister chromatids in 10.89 % of cells.The plants F2 karyotypes were marked with aneuploidy not only of chromosomes 1A and 1Rv, but also of 1D, 2D, 3D, 3B, 3A, 4A, 6D, 6B, 6A, and 7D. Structural changes were observed for the chromosomes of the first homoeologous group (1Rv, 1A, 1D, 1B), as well as for 2B, 5D, 6B, and 7B. The chromosomes 1Rv and 6B often demonstrated aberrations. The types of aberrations were centromeric break, deletions of various sizes, and a changed repeat pSc119.2 localization pattern.  相似文献   

10.
黑麦(Secale cereale L., RR)是改良普通小麦(Triticum aestivum L., AABBDD)的重要基因资源,将黑麦优异基因转移到普通小麦中,是小麦品种改良的有效途经之一。文章将四川地方品种蓬安白麦子(T. aestivum L., AABBDD) 与秦岭黑麦(S. cereale cv. Qinling, RR)杂交,染色体自动加倍获得八倍体小黑麦CD-13(AABBDDRR);通过顺序FISH和GISH分析,发现该八倍体小黑麦1RS端部与7DS的端部发生相互易位,是一个携带1RS-7DS.7DL小麦-黑麦小片段易位染色体的八倍体小黑麦。利用八倍体小黑麦CD-13与四川推广小麦品种川麦42杂交、连续自交,获得包含60个株系的F5群体;对F5群体的58个株系进行GISH和FISH分析发现,其中13个株系含有1RS-7DS.7DL小片段易位染色体。在这13个株系中,株系811染色体数目为2n=6x=42,是稳定的1RS-7DS.7DL小片段易位系;并且1RS特异分子标记和醇溶蛋白分析表明,1RS-7DS.7DL易位染色体1RS小片段的断裂点位于分子标记IB267-IAG95之间,不包含编码黑麦碱蛋白的Sec-1位点;同时1RS-7DS.7DL小片段易位系的千粒重与川麦42相当,远远高于八倍体小黑麦CD-13,对千粒重无负作用。因此,1RS-7DS.7DL小麦-黑麦小片段易位系可作为进一步深入研究1RS小片段上的优异基因及其遗传效应的重要材料。  相似文献   

11.
Based on the cross (Triticum aestivum L. x Secale cereale L.) x T. aestivum L., wheat-rye substitution lines (2n = 42) were produced with karyotypes containing, instead of a pair of homologous wheat chromosomes, a homeologous pair of rye chromosomes. The chromosome composition of these lines was described by GISH and C-banding methods, and SSR analysis. The results of genomic in situ hybridization demonstrated that karyotype of these lines included one pair of rye chromosomes each and lacked wheat--rye translocations. C-banding and SSR markers were used to identify rye chromosomes and determine the wheat chromosomes at which the substitution occurred. The lines were designated 1R(1D), 2R(2D)2, 2R(2D)3, 3R(3B), 6R(6A)2. The chromosome composition of lines IR(1A), 2R(W)1, 5R(W), 5R(5A), and 6R(W)1, which were earlier obtained according to the same scheme for crossing, was characterized using methods of telocentric analysis, GISH, C-banding, and SSR analysis. These lines were identified as 1R(1A), 2R(2D)1, 5R(5D), 5R(5A), and 6R(6A)1, C-banding of chromosomes belonging to line 1R(1A) revealed the presence of two translocated chromosomes (3DS.3DL-del. and 4AL.W) during simultaneous amplification of SSR markers located on 3DL and 4AS arms. The "combined" long arm of the newly derived chromosome 4A is assumed to be formed from the long arm of chromosome 4AS itself and a deleted segment 3DL. All examined lines are cytologically stable, except for 3R(3B), which does not affect the stability of rye 3R chromosome transfer. Chromosome identification and classification of the lines will permit them to be models for genetic studies that can be used thereafter as promising "secondary gene pools" for the purpose of plant breeding.  相似文献   

12.
八倍体小黑麦×普通小麦杂种后代群体中的染色体易位   总被引:3,自引:0,他引:3  
用改良的Giemsa C-带技术以单株为基础分析了八倍体小黑麦×普通小麦的杂种BC_1,F_(?)和F_(?)代植株的核型。在鉴定了C-带核型的1098株杂种后代植株中,发现了78条小麦-黑麦和277条黑麦-黑麦易位染色体。在不同的世代和株系中,小麦-黑麦染色体易位率变化在4.35—14.07%之间,平均7.10%;黑麦-黑麦染色体易位率在0.48—52.78%之间,平均25.23%。鉴定的小麦-黑麦易位染色体涉及了黑麦的14条不同的染色体臂和小麦的A、B和D组染色体。易位的48.57%发生在小麦和黑麦的部分同源染色体之间,51.43%发生在非部分同源染色体之间。不同的黑麦染色体臂参与易位的频率不同。小麦-黑麦染色体易位主要发生在杂种的早期世代,使用适当的选择技术在F_3获得了纯合的易位植株。文中讨论了快速选育易位系的技术和它们在小麦育种中的应用问题。  相似文献   

13.
利用C分带、基因组原位杂交并结合分子生物学手段,对12份巨穗小麦种质材料中的外源遗传物质进行了检测.结果表明,12份材料染色体数均为42,其中5份材料均具有一对小麦-黑麦(Triticum aestivum-Secalecereal)1BL/1RS易位染色体和一对中间偃麦草(Agropyron intermedium Garten)染色体、3份材料只具有一对中间偃麦草染色体、3份材料只具一对1BL/1RS染色体、1份材料无1BL/1RS和中间偃麦草染色体.进一步细胞学分析表明,此中间偃麦草染色体代换了普通小麦(Triticum aestivum L.)中的2D染色体,因其良好的同源补偿性,表示为2Ai.同时对2Ai在巨穗小麦种质中存在的遗传学意义及小麦遗传改良中的应用进行了讨论.  相似文献   

14.
Wheat-rye chromosome associations at metaphase I studied by Naranjo and Fernández-Rueda (1991) in ph1b ABDR hybrids have been reanalysed to establish the frequency of pairing between individual chromosomes of wheat and rye. Wheat chromosomes, except for 2A and 2D, and their arms were identified by C-banding. Diagnostic C-bands and other cytological markers such as telocentrics or translocations were used to identify each one of the rye chromosomes and their arms. Both the amount of telomeric C-heterochromatin and the structure of the rye chromosomes relative to wheat affected the level of wheatrye pairing. The degree to which rye chromosomes paired with their wheat homoeologues varied with each of the three wheat genomes; in most groups, the B-R association was more frequent than the A-R or D-R associations. Recombination between arms 1RL and 2RL and their homoeologues of wheat possessing a different telomeric C-banding pattern was detected and quantified at anaphase I. The frequency of recombinant chromosomes obtained supports the premise that recombination between wheat and rye chromosomes may be estimated from wheat-rye pairing.  相似文献   

15.
Powdery mildew is one of the serious diseases of wheat (Triticum aestivum L., 2n = 6 × = 42, genomes AABBDD). Rye (Secale cereale L., 2n = 2 × = 14, genome RR) offers a rich reservoir of powdery mildew resistant genes for wheat breeding program. However, extensive use of these resistant genes may render them susceptible to new pathogen races because of co-evolution of host and pathogen. Therefore, the continuous exploration of new powdery mildew resistant genes is important to wheat breeding program. In the present study, we identified several wheat-rye addition lines from the progeny of T. aestivum L. Mianyang11 × S. cereale L. Kustro, i.e., monosomic addition lines of the rye chromosomes 4R and 6R; a disomic addition line of 6R; and monotelosomic or ditelosomic addition lines of the long arms of rye chromosomes 4R (4RL) and 6R (6RL). All these lines displayed immunity to powdery mildew. Thus, we concluded that both the 4RL and 6RL arms of Kustro contain powdery mildew resistant genes. It is the first time to discover that 4RL arm carries powdery mildew resistant gene. Additionally, wheat lines containing new wheat-rye translocation chromosomes were also obtained: these lines retained a short arm of wheat chromosome 5D (5DS) on which rye chromosome 4R was fused through the short arm 4RS (designated 5DS-4RS·4RL; 4RL stands for the long arm of rye chromosome 4R); or they had an extra short arm of rye chromosome 4R (4RS) that was attached to the short arm of wheat chromosome 5D (5DS) (designated 4RS-5DS·5DL; 5DL stands for the long arm of wheat chromosome 5D). These two translocation chromosomes could be transmitted to next generation stably, and the wheat lines containing 5DS-4RS·4RL chromosome also displayed immunity to powdery mildew. The materials obtained in this study can be used for wheat powdery mildew resistant breeding program.  相似文献   

16.
利用C分带、基因组原位杂交并结合分子生物学手段,对12份巨穗小麦种质材料中的外源遗传物质进行了检测。结果表明,12份材料染色体数均为42,其中5份材料均具有一对小麦-黑麦(Triticum aestivum-Secale cereal)1BL/1RS易位染色体和一对中间偃麦草(Agropyron intermedium Garten)染色体、3份材料只具有一对中间偃麦草染色体、3份材料只具一对1BL/1RS染色体、1份材料无1BL/1RS和中间偃麦草染色体。进一步细胞学分析表明,此中间偃麦草染色体代换了普通小麦(Triticum aestivum L.)中的2D染色体,因其良好的同源补偿性,表示为2Ai。同时对2Ai在巨穗小麦种质中存在的遗传学意义及小麦遗传改良中的应用进行了讨论。  相似文献   

17.
The study presents a continuation of the research aimed at producing of wheat-rye substitution lines based on the cross (Triticum aestivum L. x Secale sereale L.) x Triticum aestivum L., and using winter rye cultivars Vyatka and Vietnamskaya Mestnaya. In BC1F5 two lines were identified, having karyotypes in which a pair of homologous wheat chromosomes was substituted by a homeologous pair of rye chromosomes. The chromosome composition of these lines was analyzed using C-banding, GISH, and SSR markers. It was demonstrated that karyotype of each line included a single pair of rye chromosomes and lacked wheat-rye translocations. The rye chromosomes were identified, and the chromosomes of wheat, at which the substitutions occurred, were determined. The lines generated by crosses with rye of Vyatka and Vietnamskaya Mestnaya cultivars were designated 1Rv(1A) and 5Rviet(5A), respectively. Chromosome identification and classification of the lines makes it possible to use them in breeding programs and genetic studies.  相似文献   

18.
A dispersed, rye-specific element has been used to isolate clones of rye origin from wheat plants containing only a single rye chromosome arm or segment. In this way a set of 23 YAC clones has been isolated from the short arm of rye chromosome 1 (1RS). This technique was extended to isolate clones from a small region of 1RS that contains a large number of agronomically important genes. The targeted cloning method allowed the isolation of 26 classes of lambda clones representing about 5% of the region. Ten of the lambda clones could be mapped to segments within this region. A third example of the application of this technique involved the isolation of clones from a very small but fully functional rye chromosome, the midget chromosome. These clones have allowed the confirmation of the origin of the midget from 1RL, and may provide a tool for the isolation of structural elements of cereal chromosomes. This technique allows the identification of clone libraries for any rye chromosome or chromosome arm, since substitution, addition and translocation lines are available for all rye chromosomes. Furthermore, the technique allows isolation of clones derived from segments of the rye genome recombined into wheat. The method is technically simple and both lambda and YAC libraries can be constructed. Synteny between the genomes of the cereals allows region-specific libraries from rye to be used to target regions of the wheat and barley genomes.  相似文献   

19.
The old Portuguese wheat landrace aggregate known as 'Barbela' shows good productivity under the low-fertility conditions often associated with acid soils. The use of genomic rye DNA, in combination with 45S rDNA and the repetitive sequences dpTal and pScl 19.2 as probes, in two sequential in situ hybridization steps enabled the identification of all chromosomes in the 'Barbela' wheat lines and the detection of the introgression of rye-origin chromatin onto wheat chromosome arm 2DL in two of the lines. Amplification of microsatellite loci using published primer pairs showed that the distal segment of wheat chromosome 2DL, which was involved in the rye translocation, was deleted. The identification and characterization of small recombinant chromosome segments in wheat-rye lines may allow their use in plant breeding programmes. Their presence in farmer-maintained material demonstrates the importance of maintaining, characterizing, and collecting landrace material before valuable genetic combinations are lost as uniform commercial crops are introduced.  相似文献   

20.
The study presents a continuation of the research aimed at producing of wheat-rye substitution lines (2n = 42) based on the cross (Triticum aestivum L. × Secale sereale L.) × Triticum aestivum L., and using winter rye cultivars Vyatka and Vietnamskaya Mestnaya. In BC 1 F 5 two lines were identified, having karyotypes in which a pair of homologous wheat chromosomes was substituted by a homeologous pair of rye chromosomes. The chromosome composition of these lines was analyzed using C-banding, GISH, and SSR markers. It was demonstrated that karyotype of each line included a single pair of rye chromosomes and lacked wheat-rye translocations. The rye chromosomes were identified, and the chromosomes of wheat, at which the substitutions occurred, were determined. The lines generated by crosses with rye of Vyatka and Vietnamskaya Mestnaya cultivars were designated 1Rv(1A) and 5Rviet(5A), respectively. Chromosome identification and classification of the lines makes it possible to use them in breeding programs and genetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号