首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The arrangement of developmentally regulated alpha- and beta-tubulin genes has been studied in the parasitic protozoan Leishmania enriettii by using Southern blot hybridization analysis. The alpha-tubulin genes occur in a tandem repeat whose monomeric unit may be represented by a 2-kilobase PstI fragment. Similarly, the beta-tubulin genes probably occur in a separate tandem repeat consisting of approximately 4-kilobase units unlinked to the alpha-tubulin repeats.  相似文献   

2.
3.
4.
The consequences of altering the levels of alpha- and beta-tubulin in Saccharomyces cerevisiae were examined by constructing fusions of the structural genes encoding the tubulins to strong galactose-inducible promoters. Overexpression of beta-tubulin (TUB2) was lethal: cells arrested in the G2 stage of the cell cycle exhibited an increased frequency of chromosome loss, were devoid of microtubules, and accumulated beta-tubulin in a novel structure. Overexpression of the major alpha-tubulin gene (TUB1) was not lethal and did not affect chromosome segregation. The rate of alpha-tubulin mRNA and protein synthesis was increased, but the protein did not accumulate. Overexpression of both alpha- and beta-tubulin together resulted in arrested cell division, and cells accumulated excess tubules that contained both alpha- and beta-tubulin. Transient overexpression of both tubulins resulted in a high frequency of chromosome loss. These data suggest that strong selective pressure exists to prevent excess accumulation of microtubules or beta-tubulin and suggest a model by which this goal may be achieved by selective degradation of unassembled alpha-tubulin. Furthermore, the phenotype of beta-tubulin overexpression is similar to the phenotype of a beta-tubulin deficiency. These results add to a number of recent studies demonstrating that mutant phenotypes generated by overexpression can be informative about the function of the gene product.  相似文献   

5.
6.
7.
The arrangement of tubulin genes in the genome of the protozoan parasite Leishmania major was studied by genomic Southern blot analysis and mapping of genes to chromosomes fractionated by pulsed field gradient gel (PFG) electrophoresis. alpha-tubulin genes exist as a tandem array of 2.4 kb PstI fragments. beta-tubulin genes are found as a tandem array of 3.9 kb AvaI or PvuI fragments, but additional genes are also found on other genomic DNA fragments. Chromosome-sized DNA molecules released from promastigotes of L. major were fractionated into at least 17 chromosome bands of approximate size 400-4000 kb by PFG gel electrophoresis. Some bands may be present in non-equimolar amounts suggesting that there may be more than 17 chromosomes. All alpha-tubulin genes were localized to a single band (chromosome 7). beta-tubulin genes were localized to four bands (chromosomes 6, 10, 16 and 17). This shows that the alpha- and beta- tubulin gene families are unlinked in L. major. There is a single chromosomal locus for the alpha-tubulin tandem array whereas beta-tubulin genes exist both as a tandem array and as dispersed genes at four chromosomal loci.  相似文献   

8.
9.
The goal of our investigations is to define the genetic control of microtubule-based processes in a higher plant. The available evidence suggests that we have achieved our first objective: the characterization of the complete alpha-tubulin and beta-tubulin gene families of Arabidopsis. Four additional alpha-tubulin genes (TUA2, TUA4, TUA5, and TUA6) of Arabidopsis have been cloned and sequenced to complete the analysis of the gene structure for all six alpha-tubulin genes detectable on DNA gel blots of Arabidopsis genomic DNA hybridized with alpha-tubulin coding sequences. TUA1 and TUA3 were characterized earlier in our laboratory. Noncoding gene-specific hybridization probes have been constructed for all six alpha-tubulin genes and used in RNA gel blot analyses to demonstrate that all six genes are transcribed. The six genes encode four different alpha-tubulin isoforms; TUA2 and TUA4 encode a single isoform, as do TUA3 and TUA5. Two-dimensional protein gel immunoblot analyses have resolved at least four alpha-tubulin isoforms from plant tissues, suggesting that all of the predicted TUA gene products are synthesized in vivo.  相似文献   

10.
11.
12.
Genetics of the Tubulin Gene Families of Physarum   总被引:4,自引:0,他引:4       下载免费PDF全文
The organization of the alpha- and beta-tubulin gene families in Physarum was investigated by Mendelian analysis. Restriction endonuclease-generated DNA fragments homologous to alpha- and beta-tubulin show length polymorphisms that can be used as markers for genetic mapping. Analysis of meiotic assortment among progeny of heterozygotes allowed alpha- and beta-tubulin sequence loci to be defined. There are four unlinked alpha-tubulin sequence loci (altA, altB, altC and altD) and at least three unlinked beta-tubulin sequence loci (betA, betB and betC). The alpha-tubulin loci are not linked to the beta-tubulin loci. --Segregation of tubulin sequence loci with respect to ben mutations that confer resistance to antitubulin benzimidazole drugs was used to investigate whether any members of the alpha- or beta-tubulin gene families are allelic to ben loci. The beta-tubulin sequence locus betB is allelic to the resistance locus benD, the betA locus is probably allelic to benA and the alpha-tubulin sequence locus altC may be allelic to benC. The molecular implications of benzimidazole resistance phenotypes when only one of the expressed beta-tubulin gene family members mutates to drug resistance are discussed in relation to tubulin function.  相似文献   

13.
Dinitroaniline herbicides are used for the selective control of weeds in arable crops. Dinitroaniline herbicide resistance in the invasive weed goosegrass was previously shown to stem from a spontaneous mutation in an alpha-tubulin gene. We transformed and regenerated tobacco plants with an alpha/beta-tubulin double gene construct containing the mutant alpha-tubulin gene and showed that expression of this construct confers a stably inherited dinitroaniline-resistant phenotype in tobacco. In all transformed lines, the transgene alpha- and beta-tubulins increased the cytoplasmic pool of tubulin approximately 1.5-fold while repressing endogenous alpha- and beta-tubulin synthesis by up to 45% in some tissues. Transgene alpha- and beta-tubulin were overexpressed in every plant tissue analyzed and comprised approximately 66% of the total tubulin in these tissues. Immunolocalization studies revealed that transgene alpha- and beta-tubulins were incorporated into all four microtubule arrays, indicating that they are functional. The majority of the alpha/beta-tubulin pools are encoded by the transgenes, which implies that the mutant alpha-tubulin and the beta-tubulin can perform the majority, if not all, of the roles of microtubules in both juvenile and adult tobacco plants.  相似文献   

14.
We analyzed the role of tubulin polyglycylation in Tetrahymena thermophila using in vivo mutagenesis and immunochemical analysis with modification-specific antibodies. Three and five polyglycylation sites were identified at glutamic acids near the COOH termini of alpha- and beta-tubulin, respectively. Mutants lacking all polyglycylation sites on alpha-tubulin have normal phenotype, whereas similar sites on beta-tubulin are essential. A viable mutant with three mutated sites in beta-tubulin showed reduced tubulin glycylation, slow growth and motility, and defects in cytokinesis. Cells in which all five polyglycylation sites on beta-tubulin were mutated were viable if they were cotransformed with an alpha-tubulin gene whose COOH terminus was replaced by the wild-type COOH terminus of beta-tubulin. In this double mutant, beta-tubulin lacked detectable polyglycylation, while the alpha-beta tubulin chimera was hyperglycylated compared with alpha-tubulin in wild-type cells. Thus, the essential function of polyglycylation of the COOH terminus of beta-tubulin can be transferred to alpha-tubulin, indicating it is the total amount of polyglycylation on both alpha- and beta-tubulin that is essential for survival.  相似文献   

15.
16.
Microtubule organization in the cytoplasm is in part a function of the number and length of the assembled polymers. The intracellular concentration of tubulin could specify those parameters. Saccharomyces cerevisiae strains constructed with moderately decreased or increased copy numbers of tubulin genes provide an opportunity to study the cellular response to a steady-state change in tubulin concentration. We found no evidence of a mechanism for adjusting tubulin concentrations upward from a deficit, nor did we find a need for such a mechanism: cells with no more than 50% of the wild-type tubulin level were normal with respect to a series of microtubule-dependent properties. Strains with increased copies of both alpha- and beta-tubulin genes, or of alpha-tubulin genes alone, apparently did down regulate their tubulin levels. As a result, they contained greater than normal concentrations of tubulin but much less than predicted from the increase in gene number. Some of this down regulation occurred at the level of protein. These strains were also phenotypically normal. Cells could contain excess alpha-tubulin protein without detectable consequences, but perturbations resulting in excess beta-tubulin genes may have affected microtubule-dependent functions. All of the observed regulation of levels of tubulin can be explained as a response to toxicity associated with excess tubulin proteins, especially if beta-tubulin is much more toxic than alpha-tubulin.  相似文献   

17.
Three of four mRNAs that are specific to the differentiation of Naegleria gruberi amebae into flagellates (Mar, J., J. H. Lee, D. Shea, and C. J. Walsh, 1986, J. Cell Biol., 102:353-361) have been identified as coding for flagellar proteins. The products of these mRNAs, which are coordinately regulated during the differentiation, were identified by in vitro translation of hybrid-selected RNA followed by two-dimensional gel electrophoresis and antibody binding. Six cross-hybridizing clones complementary to a 1.7-kb RNA (class II) all selected mRNA that was translated into two alpha-tubulins. The principal in vitro product, alpha-1, comigrated with a cytoplasmic alpha-tubulin, while the minor product with a more acidic pI, alpha-2, comigrated with flagellar alpha-tubulin. While Naegleria flagellar alpha-tubulin was found to be acetylated based on its reaction with a monoclonal antibody specific to this form, we suggest that alpha-2 is not likely to arise due to acetylation in vitro but probably represents the product of a second alpha-tubulin gene. The class III clone, also complementary to a 1.7-kb RNA, selected beta-tubulin mRNA. In the course of this work it was found, using monoclonal antibodies to the alpha- and beta-subunits of tubulin, that Naegleria alpha-tubulin migrated faster than beta-tubulin on SDS-PAGE. The class IV clone, which hybridizes with a 0.5-kb RNA, selected an mRNA that was translated into a heat stable calcium-binding protein, flagellar calmodulin.  相似文献   

18.
The relationship between microtubule dynamics and polyglutamylation of tubulin was investigated in young differentiating mouse brain neurons. Selective posttranslational labeling with [3H]glutamate and immunoblotting with a specific monoclonal antibody (GT335) enabled us to analyze polyglutamylation of both alpha and beta subunits. Nocodazole markedly inhibited incorporation of [3H]glutamate into alpha- and beta-tubulin, whereas taxol had no effect for alpha-tubulin and a stimulating effect for beta-tubulin. These results strongly suggest that microtubule polymers are the preferred substrate for polyglutamylation. Chase experiments revealed the existence of a reversal reaction that, in the case of alpha-tubulin, was not affected by microtubule drugs, suggesting that deglutamylation of this subunit can occur on both polymers and soluble tubulin. Evidence was obtained that deglutamylation of alpha-tubulin operates following two distinct rates depending on the length of the polyglutamyl chain, the distal units (4th-6th) being removed rapidly whereas the proximal ones (1st-3rd) appearing much more resistant to deglutamylation. Partition of glutamylated alpha-tubulin isoforms was also correlated with the length of the polyglutamyl chain. Forms bearing four to six units were recovered specifically in the polymeric fraction, whereas those bearing one to three units were distributed evenly between polymeric and soluble fractions. It thus appears that the slow rate component of the deglutamylation reaction offers to neurons the possibility to maintain a basal level of glutamylated alpha-tubulin in the soluble pool independently of microtubule dynamics. Finally, some differences observed in the glutamylation of alpha- and beta-tubulin suggest that distinct enzymes are involved.  相似文献   

19.
We have obtained sequence data for beta-tubulin genes from eight species of Foraminifera (forams) and alpha-tubulin sequences from four species, sampling major taxonomic groups from a wide range of environments. Analysis of the beta-tubulin sequences demonstrates that foram beta-tubulins possess the highest degree of divergence of any tubulin gene sequenced to date and represent a novel form of the protein. In contrast, foram alpha-tubulin genes resemble the conventional alpha-tubulins seen in other organisms. Partition homogeneity analysis shows that the foraminiferal beta-tubulin gene has followed an evolutionary path that is distinct from that of all other organisms. Our findings indicate that positive selective pressure occurred on the beta-tubulin subunit in ancestral forams prior to their diversification. The specific substitutions observed have implications for microtubule (MT) assembly dynamics. The regions most strongly affected are implicated in lateral contacts between protofilaments and in taxol binding. We predict that these changes strengthen lateral contacts between adjacent dimers in a manner similar to that induced by taxol binding, thus allowing the formation of the tubulin "helical filaments" observed in forams by electron microscopy. Our results also indicate that substantial changes to these portions of the beta-tubulin molecule can be made without sacrificing essential MT functions.  相似文献   

20.
Overexpression of alpha- and beta-tubulin genes in Saccharomyces cerevisiae, separately or together, leads to accumulation of large excesses of each of the polypeptides and arrest of cell division. However, other consequences of overexpression of these genes differ in several ways. As shown previously (D. Burke, P. Gasdaska, and L. Hartwell, Mol. Cell. Biol. 9:1049-1059, 1989), overexpression of beta-tubulin leads, at early times, to loss of microtubule structures and loss of viability. Eventually, the excess beta-tubulin forms abnormal structures. We show here that, in contrast, overexpression of alpha-tubulin led to none of these phenotypes and in fact could suppress each of the phenotypes associated with beta-tubulin accumulation. Truncated forms of beta-tubulin that were not competent to carry out microtubule functions also failed to elicit the beta-tubulin-specific phenotypes when overexpressed. The data support the hypothesis that beta-tubulin in excess over alpha-tubulin is uniquely toxic, perhaps because it interferes with normal microtubule assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号