首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of prostaglandin E2 and F2 alpha, thromboxane B2 and 6-keto-prostaglandin F1 alpha was measured in isolated human placental cotyledons perfused under high- and low-oxygen conditions. Also the effect of reoxygenation on prostaglandin production was studied. During the high-oxygen period, prostaglandin E2 accounted for 44% and 6-keto-prostaglandin F1 alpha for 28% of all prostaglandin release, and the rank order of prostaglandin release was E2 greater than 6-keto-prostaglandin F1 alpha greater than thromboxane B2 greater than prostaglandin F2 alpha. Hypoxia had no significant effect on quantitative prostaglandin release, but the ratio of prostaglandin E2 to prostaglandin F2 alpha was significantly increased. After the hypoxic period during reoxygenation the release of 6-keto-prostaglandin F1 alpha was significantly decreased, as was the ratio of 6-keto-prostaglandin F1 alpha to thromboxane B2. Also the ratio of the vasodilating prostaglandins (E2, 6-keto-prostaglandin F1 alpha) to the vasoconstricting prostaglandins (thromboxane B2, prostaglandin F2 alpha) was decreased during reoxygenation period. With the constant flow rate, the perfusion pressure increased during hypoxia in six and was unchanged in three preparations. The results indicate that changes in the tissue oxygenation in the placenta affect prostaglandin release in the fetal placental circulation. This may also have circulatory consequences.  相似文献   

2.
Prostaglandin production was studied in fetal and adult type II alveolar epithelial cells. Two culture systems were employed, fetal rat lung organotypic cultures consisting of fetal type II cells and monolayer cultures of adult lung type II cells. Dexamethasone, thyroxine, prolactin and insulin, hormones which influence lung development, each reduced the production of prostaglandin E and F alpha by the organotypic cultures. The fetal cultures produced relatively large quantities of prostaglandin E and F alpha and smaller quantities of 6-keto-prostaglandin F1 alpha and thromboxane B2. However, prostaglandin E2 production was predominant. In contrast, the adult type II cells in monolayer culture produced predominantly prostacyclin (6-keto-prostaglandin F1 alpha) along with smaller quantities of prostaglandin E2 and F2 alpha. The type II cells were relatively unresponsive to prostaglandins. Exogenously added prostaglandin E, had no effect on cell growth, and only a minimal effect on cyclic AMP levels in the monolayer cultures.  相似文献   

3.
We have previously demonstrated that decreased cortical prostaglandin metabolism can contribute significantly to an increase in renal tissue levels and activity of prostaglandin E2 in bilateral ureteral obstruction, a model of acute renal failure. In the present study, we have further investigated whether alterations in prostaglandin metabolism can occur in a nephrotoxic model of acute renal failure. Prostaglandin synthesis, prostaglandin E2 metabolism (measured as both prostaglandin E2-9-ketoreductase and prostaglandin E2-15-hydroxydehydrogenase activity), and tissue concentration of prostaglandin E2 were determined in rabbit kidneys following an intravenous administration of uranyl nitrate (5 mg/kg). No changes in the rates of cortical microsomal prostaglandin E2 and prostaglandin F2 alpha synthesis were noted at the end of 1 and 3 days, while medullary synthesis of prostaglandin E2 fell by 47% after 1 day and 43% after 3 days. Cortical cytosolic prostaglandin E2-9-ketoreductase activity was found to be decreased by 36% and 76% after 1 and 3 days respectively. No significant changes were noted in cortical cytosolic prostaglandin E2-15-hydroxydehydrogenase activity after 3 days. Cortical tissue levels of prostaglandin E2 increased by 500% at the end of 3 days. These data demonstrate that in nephrotoxic acute renal failure, decreased prostaglandin metabolism (i.e., prostaglandin E2-9-ketoreductase activity) can result in increased tissue levels of prostaglandin E2 in the absence of increased prostaglandin synthesis and suggest that alterations in prostaglandin metabolism may be an important regulator of prostaglandin activity in acute renal failure.  相似文献   

4.
Preimplantation embryos of many species are known to synthesize prostaglandins. These tissue hormones are believed to influence embryonic metabolism, as well as embryo-maternal interaction during implantation although their putative role(s) remains obscure. Here, prostaglandin production by blastocysts from cynomolgus monkeys (Macaca fascicularis) was examined qualitatively during in vitro culture. Tritium labelled arachidonic acid was metabolized to 6 keto-prostaglandin F1 alpha, 2,3-dinor-prostaglandin F1 alpha and thromboxane B2, as characterized by HPLC separation. Also, 6-keto-prostaglandin F1 alpha, and thromboxane B2 as characterized by HPLC separation. Also, 6-keto-prostaglandin F1 alpha and thromboxane B2 were identified by specific RIA's. Our data suggest that the main arachidonic acid metabolites produced by blastocysts of cynomolgus monkeys are prostacyclin and thromboxane.  相似文献   

5.
Five prostaglandins, i.e. prostaglandins E2, F2alpha and D2, 6-keto-prostaglandin F1alpha and thromboxane B2, were measured by mass spectrometry. Homogenates of fetal lamb brain, lung, liver, spleen and kidney and the ductus arteriosus, aorta and pulmonary artery formed different amounts of each product. Although the main prostaglandin in the fetal organs was prostaglandin E2, arterial tissue formed mostly 6-keto-prostaglandin F1alpha. These results demonstrate significant differences between organs and tissues in the relative direction of the 'prostaglandin synthetase' enzyme complex.  相似文献   

6.
We have utilized ionophores to test whether stimulation of chondrocyte prostaglandin biosynthesis is accompanied by an increase in cyclic nucleotide levels in these cells. Radioimmunoassay of prostaglandin E2, 6-oxo-prostaglandin F1 alpha (the stable metabolite of prostaglandin I2) and prostaglandin F2 alpha showed that synthesis of each was stimulated by the divalent-cation ionophore, A23187 after short-term incubation (1-7 min) in serum-free medium. No stimulation of thromboxane B2 was detected. Two monovalent ionophores, lasalocid and monensin failed to stimulate prostaglandin biosynthesis after short-term incubation. Ionophore A23187-stimulated prostaglandin biosynthesis was variably and partially inhibited by sodium meclofenamate, indomethacin and aspirin, but not by sodium salicylate. Ionophore A23187-stimulated prostaglandin biosynthesis was accompanied by a 7.5-fold increase in cyclic AMP levels after 15 min. Sodium meclofenamate, indomethacin and aspirin which inhibited prostaglandin E2 biosynthesis also reduced cyclic AMP levels. Exogenous prostaglandin E2 (1 microgram/ml) stimulated cyclic AMP biosynthesis, which was not inhibited by aspirin. These results indicated that prostaglandins can be considered as one of the local effectors controlling cyclic AMP production in articular cartilage.  相似文献   

7.
W C Chang  H H Tai 《Life sciences》1984,34(13):1269-1280
The effects of aging on the prostacyclin and thromboxane biosynthesis and prostaglandin catabolic enzyme activity in rat kidney were investigated. The prostacyclin biosynthesis, using arachidonic acid as substrate, was the greatest in young kidneys (2 months old) and then progressively decreased in mature (12 months old) and old (24 months old) kidneys, while thromboxane biosynthetic activity showed no significant change as a function of age. When prostaglandin H2 was used as substrate, the prostacyclin and thromboxane biosynthesis showed similar results as when arachidonic acid was used as substrate; the prostacyclin biosynthesis progressively decreased and thromboxane biosynthesis showed no significant change as a function of age. The fatty acid cyclooxygenase in kidney was measured by a specific radioimmunoassay. No significant change in renal fatty acid cyclooxygenase as a function of age was found. Thus, we concluded that the progressive decrease in renal prostacyclin biosynthesis as a function of age is due to a defect in prostacyclin synthetase in aged kidneys. The prostaglandin catabolic enzyme, NAD+-dependent 15-hydroxyprostaglandin dehydrogenase, in kidneys was also investigated. The enzyme activity progressively decreased as a function of age, which suggested a decrease in the metabolism of thromboxane A2 in aged kidneys. The present results, indicating a decrease in renal prostacyclin biosynthesis and renal 15-hydroxyprostaglandin dehydrogenase activity with aging, might contribute to a plausible explanation of the progressive decrease in renal functions in the elderly.  相似文献   

8.
Prostaglandin E2 and prostacyclin (prostaglandin I2) produce hyperalgesia in animals and humans. Because there is evidence that prostaglandins contribute to pain maintained by sympathetic nervous system activity, we evaluated whether sympathetic postganglionic neurons synthesize these hyperalgesic prostaglandins, and whether production of prostaglandins by these neurons can contribute to sensitization of primary afferent nociceptors. Intradermal injection of arachidonic acid but not linoleic acid, in the rat hindpaw, produces a decrease in mechanical nociceptive threshold. This hyperalgesic effect is prevented by indomethacin, an inhibitor of prostaglandin synthesis or by prior surgical removal of the lumbar sympathetic chain. To test the hypothesis that sympathetic postganglionic neurons are the source of prostaglandins, we measured production of prostaglandin E2 and 6-keto-prostaglandin F1 alpha (the stable metabolite of prostacyclin) by homogenates of adult rat sympathetic postganglionic neurons from superior cervical ganglia. These homogenates produced significant amounts of prostaglandin E2 and 6-keto-prostaglandin F1 alpha, and most of this production is eliminated by neonatal administration of 6-hydroxydopamine which selectively destroys sympathetic postganglionic neurons. These results demonstrate that sympathetic postganglionic neurons produce prostaglandins, and supports further the hypothesis that the release of prostaglandins from sympathetic postganglionic neurons contributes to the hyperalgesia associated with sympathetically maintained pain.  相似文献   

9.
To determine if the induction of immune-mediated glomerular injury influences the formation of glomerular cyclooxygenase products, we measured thromboxane B2 (TXB2), 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) and prostaglandin E2 (PGE2) production by isolated glomeruli of rabbits induced with acute serum sickness nephritis by the administration of bovine serum ablumin (BSA). Animals were randomly assigned to one of three experimental groups: animals injected with BSA (BSA group; n = 11); animals injected with normal saline (control group; n = 11); and animals injected with BSA which were treated with the thromboxane synthetase inhibitor, OKY-046 (BSA + OKY-046; n = 6). Animals in the BSA and BSA + OKY groups developed severe proteinuria and glomerular histologic lesions of nephritis. No differences in proteinuria, serum creatinine and severity of histologic nephritis were observed between the two groups. Examination of glomerular eicosanoid production at the end of the experiment showed a marked reduction of glomerular PGE2 and 6-keto-PGF1 alpha production with a smaller reduction of glomerular TXB2 production in the BSA group. In the BSA + OKY-046 group, the production of TXB2 was significantly less than that in the BSA group; despite this, no effect on proteinuria could be discerned.  相似文献   

10.
Prostaglandin E2 is converted to 15-keto-13,14 dihydro prostaglandin E2,15-keto-prostaglandin F2 alpha and 15-keto-13,14 dihydro prostaglandin F2 alpha, by supernatants from rat kidney medulla. The main pathway for prostaglandin E2 inactivation is the combined action of 15 hydroxy dehydrogenase and delta 13 reductase enzymes. 9-Keto-reductase route constitutes a minor pathway. Prostaglandin F2 alpha is converted into 15-keto-prostaglandin F2 alpha, 15-keto-13, 14 dihydro prostaglandin F2 alpha and 15-keto-dihydro prostaglandin E2. Enzyme activities are time and substrate-concentration dependent. In the presence of an excess of substrate, rat renal medulla inactivates 40 and 56 times more prostaglandin E2 and prostaglandin F2 alpha, respectively, than the amount which is released under basal conditions. These results are in contrast to the generally accepted concept that the kidney cortex is the sole site of renal prostaglandin catabolism, and suggest, for the first time, that rat renal medulla may be a key site for the modulation of prostaglandin levels in the kidney.  相似文献   

11.
To determine if acute exposure to ozone can cause changes in the production of cyclooxygenase metabolites of arachidonic acid (AA) in the lung which are associated with changes in lung mechanics, we exposed mongrel dogs to 0.5 ppm ozone for two hours. We measured pulmonary resistance (RL) and dynamic compliance (Cdyn) and obtained methacholine dose response curves and bronchoalveolar lavagate (BAL) before and after the exposures. We calculated the provocative dose of methacholine necessary to increase RL 50% (PD50) and analyzed the BAL for four cyclooxygenase metabolites of AA: a stable hydrolysis product of prostacyclin, 6-keto-prostaglandin F1 alpha (6-keto-PgF1 alpha); prostaglandin E2 (PgE2); a stable hydrolysis product of thromboxane A2, thromboxane B2 (TxB2); and prostaglandin F2 alpha (PgF2 alpha). Following ozone exposure, RL increased from 4.75 +/- 1.06 to 6.08 +/- 1.3 cm H2O/L/sec (SEM) (p less than 0.05), Cdyn decreased from 0.0348 +/- 0.0109 TO .0217 +/- .0101 L/cm H2O (p less than 0.05), and PD50 decreased from 4.32 +/- 2.41 to 0.81 +/- 0.49 mg/cc (p less than 0.05). The baseline metabolite levels were as follows: 6-keto PgF1 alpha: 96.1 +/- 28.8 pg/ml; PgE2: 395.8 +/- 67.1 pg/ml; TxB2: 48.5 +/- 11.1 pg/ml; PgF2 alpha: 101.5 +/- 22.6 pg/ml. Ozone had no effect on any of these prostanoids. These studies quantify the magnitude of cyclooxygenase products of AA metabolism in BAL from dog lungs and demonstrate that changes in their levels are not prerequisites for ozone-induced changes in lung mechanics or airway reactivity.  相似文献   

12.
Methods for the profiling of prostaglandin F2 alpha (PGF2 alpha), prostaglandin D2 (PGD2), prostaglandin E2 (PGE2), thromboxane B2 (TXB2) and 6-keto-prostaglandin F1 alpha (6KPGF1 alpha) biosynthesis in tissue samples of clinical origin by capillary gas chromatography-negative ion chemical ionization mass spectrometry (CGC-NICIMS) are detailed. Aliquots (25 microliter 1) of incubates (1 ml volume) of human lung carcinoma and normal human lung tissue fragments (total protein content = 0.2 to 2.0 mg) were derivatized for vapor phase analysis in the presence of 0.75 to 1.60 ng of tetradeuterated analogs of PGE2, PGF2 alpha and 6KPGF1 alpha without prior extraction and/or chromatography. The derivatized analytes and internal standards were detected by simultaneous monitoring of ions at six different masses characteristic for each of the derivatized prostanoids. The inter-sample and intra-sample coefficients of variation for the assay method were typically less than 12%. The analysis of biological samples was completed with less than 2.5% of each derivatized sample per injection. The samples were of adequate purity for the identification and quantitation of each of the eicosanoids. The methods described in this report are highly selective and highly sensitive with detection limits of 0.1 to 0.2 picograms per injection. The analytical procedures provide the basis for comparisons of the qualitative and quantitative profiles of prostaglandin biosynthesis and should be adaptable for use in a variety of biological and clinical studies.  相似文献   

13.
The influences of age, sodium restriction and posture on 24-hour urinary excretion of prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF 2 alpha), 6-keto-prostaglandin F1 alpha (6-keto-PGF 1 alpha) and thromboxane B2 (TXB2) were investigated in 111 healthy children and youngsters in the age between 1 day and 16 years. A considerable degree of variation was found in normal 24-hour urinary prostaglandin excretion in all age groups. There was no significant effect of age on the urinary excretion of prostaglandins when data were corrected for body surface area. In addition, sodium restriction and posture had no influence on the excretion of PGE2, PGF 2 alpha, 6-keto-PGF 1 alpha and TXB2. Our results indicate that in the first days of life the kidney already has the capacity to synthesize prostaglandins in amounts comparable to older children.  相似文献   

14.
Alteration of vascular thromboxane in rats with subtotal renal ablation   总被引:1,自引:0,他引:1  
To assess the roles of vascular prostaglandins in the hypertension of chronic renal failure, the release of prostacyclin and thromboxane (TX) from aorta was evaluated in male Sprague-Dawley rats, the renal mass of which was reduced by removing one kidney and two-thirds of the contralateral kidney ("5/6 nephrectomy"). Five-sixths nephrectomy was followed by significant rises in serum creatinine to 0.55 +/- 0.03 mg/dl and urea nitrogen to 42.9 +/- 3.8 mg/dl, with a concomitant rise in mean blood pressure from 121.6 +/- 1.6 mmHg to 155.3 +/- 8.4 mmHg. In 5/6 nephrectomized rats, the release of TX A2 from aorta, as measured by its stable metabolite TX B2, increased by 60% (p less than 0.01) and prostacyclin, as measured by its stable metabolite 6-keto-prostaglandin, F1 alpha (6-keto-PG F1 alpha) increased by 51% (p less than 0.05). The amounts of both TX B2 and 6-keto-PG F1 alpha released from aorta were closely related to the height of mean blood pressure. These results suggest that the enhanced vasoconstrictor TX production in the vascular walls may be relevant to hypertension in rats with subtotal renal ablation. The adaptive increase in prostacyclin production in the vascular walls may compensate for the elevation of blood pressure due to chronic renal failure in this animal model.  相似文献   

15.
The thromboxane A2/prostacyclin (TX/PGI) ratios were measured in patients with renal diseases to elucidate the relationship between the ratios and the pathological changes of the diseases. Urinary stable metabolites of thromboxane A2 and prostacyclin, 11-dehydro-thromboxane B2 and 2,3-dinor-6-keto-prostaglandin F1alpha, respectively, were converted to 1-methyl ester-propylamide-9,12,15-tris-dimethylisopropylsilyl ether derivative and 1-methyl ester-6-methoxime-9,12,15-tris-dimethylisopropylsilyl ether derivative, respectively, and applied to a gas chromatography/selected ion monitoring. The TX/PGI ratios of 10 outpatients and 6 inpatients with chronic glomerulonephritis were higher than those of 13 healthy volunteers. In an inpatient with systemic lupus erythematoides, the TX/PGI ratios were gradually lowered to the normal level with the therapies. Furthermore, the ratios seemed to change in advance of the changes of the levels of urinary protein and hematuria. These observations suggested that the TX/PGI ratio was a useful index to assess the pathological condition of renal diseases and the effects of treatment.  相似文献   

16.
The effect of ethanol (10-500 mmol/l) on platelet thromboxane production and on vascular thromboxane and prostacyclin was studied in human fetal tissues. The release of thromboxane B2 (a metabolite of thromboxane A2) during thrombin-induced spontaneous aggregation of fetal platelets was inhibited by ethanol concentrations of 50 mmol/l or higher. Ethanol at concentration from 100 mmol/l also inhibited umbilical artery production of thromboxane B2 and that of 6-keto-prostaglandin F1 alpha (a metabolite of prostacyclin). However, it stimulated the conversion of exogenous arachidonic acid to thromboxane B2 in fetal platelets and to 6-keto-prostaglandin F1 alpha in the umbilical artery. This suggests that ethanol inhibits phospholipase A2, but stimulates the enzymes distal from phospholipase A2 in the prostaglandin-synthesizing enzyme cascade.  相似文献   

17.
The effect of sex steroids, 17 beta-estradiol and testosterone, on the production of 6-keto-prostaglandin F1 alpha, prostaglandin F2 alpha and prostaglandin E2 was studied in cultures of piglet aorta endothelial cells. In cells isolated from female animals both steroids stimulated the secretion of prostaglandins. In contrast, sex steroids did not affect prostaglandin synthesis by endothelial cells taken from male animals. In addition, female endothelial cells convert testosterone into estriol, estrone and estradiol. Estradiol-induced stimulation of prostacyclin production may explain in part the beneficial role generally attributed to naturally occurring estrogens in cardiovascular diseases.  相似文献   

18.
Maturational changes have been noted in neurally mediated contractile and relaxant responses in airways from New Zealand White rabbits. In this study, we focused on prostaglandins with bronchoprotective properties as potential modulators of airway tone in maturing rabbits. Tracheal rings from 1-, 2-, and 13-wk-old rabbits were assessed for neurally mediated contractile and relaxant responses produced by electrical field stimulation (EFS) of nerves in the presence and absence of the prostaglandin inhibitor, indomethacin (Indo). We also measured EFS-induced release of prostaglandin E(2) (PGE(2)) and the stable metabolite of prostacyclin, 6-keto-prostaglandin F(1alpha) (6-keto-PGF(1alpha)). In the presence of Indo, EFS produced significant increases in contractile responses in segments from 1- and 2-wk-old animals but not in segments from 13-wk adult rabbits. Tracheal rings from 1- and 2-wk-old animals precontracted with neurokinin A (NKA) relaxed 100% in response to EFS when Indo was not in the bath. In rings from 13-wk-old animals, relaxation was 40%. With Indo, relaxation was abolished in 1-wk-old animals and reduced to 30% in the 2- and 13-wk-old groups. Buffer from baths collected after EFS had significant increases in PGE(2) and 6-keto-PGF(1alpha) released from tissues from 1- vs. 2- and 13-wk-old animals. Dose response curves to PGE(2) using tissues precontracted to NKA showed significant increases in relaxant responses in 1- and 2- vs. 13-wk-old rabbits. In rabbit airways, this study demonstrates enhanced modulation of airway tone by PGE(2) and greater release of the bronchoprotective prostaglandins PGE(2) and prostacyclin early in life.  相似文献   

19.
Human and rat peritoneal macrophages and rat Kupffer cells were labelled with [1-14C] arachidonic acid and stimulated with the calcium ionophore A23187. The metabolites formed were separated by high pressure liquid chromatography (HPLC). Human peritoneal macrophages formed especially leukotriene B4, 5-hydroxy-6,8,11,14 eicosatetraenoic acid and small amounts of leukotriene C4 and thromboxane B2, 12-hydroxy-5,8,10 heptadecatrienoic acid and 6-keto-prostaglandin F1 alpha, whereas rat peritoneal macrophages mainly produced cyclooxygenase products and in particular thromboxane B2 and 12-hydroxy-5,8,10 heptadecatrienoic acid. Rat Kupffer cells synthesized mainly cyclooxygenase products such as prostaglandin F2 alpha, prostaglandin D2 and prostaglandin E2. These results indicate that the profile of eicosanoids production by macrophages is dependent both on the species and on the tissue from which the macrophage is derived.  相似文献   

20.
The effect of adrenalectomy on the formation of cyclooxygenase and lipoxygenase products by activated peritoneal rat macrophages was determined. After isolation, the cells were incubated with [1-14C]arachidonic acid and the calcium ionophore A23187 and the metabolites isolated by HPLC chromatography. The main components formed in the controls are 6-keto-prostaglandin F1 alpha, thromboxane B2 and 12-HETE. One peak represents 5,12-di-HETE. Smaller amounts of prostaglandin F2 alpha, prostaglandin E2, prostaglandin D2, leukotriene B4 and 15-HETE are also present. After adrenalectomy, a considerable increase occurs in the amounts of leukotriene B4, 15-HETE and 12-HETE. The increase in the prostaglandins is smaller. The compounds formed from endogenous arachidonic acid are also determined. In the cells of the controls, 6-keto-prostaglandin F1 alpha and thromboxane B2 are produced in higher amounts than leukotriene B4. After adrenalectomy, the formation of leukotriene B4 is much more increased than that of 6-keto-prostaglandin F1 alpha. These effects are most probably related to a diminished amount or inactivation of lipocortin, a glucocorticosteroid-induced peptide with phospholipase A2 inhibitory activity in adrenalectomized animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号