首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium-dependent nucleoside transport in mouse leukemia L1210 cells   总被引:1,自引:0,他引:1  
Nucleoside permeation in L1210/AM cells is mediated by (a) equilibrative (facilitated diffusion) transporters of two types and by (b) a concentrative Na(+)-dependent transport system of low sensitivity to nitrobenzylthioinosine and dipyridamole, classical inhibitors of equilibrative nucleoside transport. In medium containing 10 microM dipyridamole and 20 microM adenosine, the equilibrative nucleoside transport systems of L1210/AM cells were substantially inhibited and the unimpaired activity of the Na(+)-dependent nucleoside transport system resulted in the cellular accumulation of free adenosine to 86 microM in 5 min, a concentration three times greater than the steady-state levels of adenosine achieved without dipyridamole. Uphill adenosine transport was not observed when extracellular Na+ was replaced by Li+, K+, Cs+, or N-methyl-D-glucammonium ions, or after treatment of the cells with nystatin, a Na+ ionophore. These findings show that concentrative nucleoside transport activity in L1210/AM cells required an inward transmembrane Na+ gradient. Treatment of cells in sodium medium with 2 mM furosemide in the absence or presence of 2 mM ouabain inhibited Na(+)-dependent adenosine transport by 50 and 75%, respectively. However, because treatment of cells with either agent in Na(+)-free medium decreased adenosine transport by only 25%, part of this inhibition may be secondary to the effects of furosemide and ouabain on the ionic content of the cells. Substitution of extracellular Cl- by SO4(-2) or SCN- had no effect on the concentrative influx of adenosine.  相似文献   

2.
The human equilibrative nucleoside transporter, hENT1, which is sensitive to inhibition by nitrobenzylthioinosine (NBMPR), is expressed in a wide variety of tissues. hENT1 is involved in the uptake of natural nucleosides, including regulation of the physiological effects of extracellular adenosine, and transports nucleoside drugs used in the treatment of cancer and viral diseases. Structure-function studies have revealed that transmembrane domains (TMD) 3 through 6 of hENT1 may be involved in binding of nucleosides. We have hypothesized that amino acid residues within TMD 3-6, which are conserved across equilibrative transporter sequences from several species, may have a critical role in the binding and transport of nucleosides. Therefore, we explored the role of point mutations of two conserved glycine residues, at positions 179 and 184 located in transmembrane domain 5 (TMD 5), using a GFP-tagged hENT1 in a yeast nucleoside transporter assay system. Mutations of glycine 179 to leucine, cysteine, or valine abolished transporter activity without affecting the targeting of the transporter to the plasma membrane, whereas more conservative mutations such as glycine to alanine or serine preserved both targeting to the plasma membrane and transport activity. Similar point mutations at glycine 184 resulted in poor targeting of hENT1 to the plasma membrane and little or no detectable functional activity. Uridine transport by G179A mutant was significantly lower (p < 0.05) and less sensitive (p < 0.05) to inhibition by NBMPR when compared to the wild-type transporter (IC(50) 7.7 +/- 0.8 nM versus 46 +/- 14.6 nM). Based on these data, we conclude that when hENT1 is expressed in yeast, glycine 179 is critical not only to the ability of hENT1 to transport uridine but also as a determinant of hENT1 sensitivity to NBMPR. In contrast, glycine 184 is likely important in targeting the transporter to the plasma membrane. This is the first identification and characterization of a critical amino acid residue of hENT1 that is important in both nucleoside transporter function and sensitivity to inhibition by NBMPR.  相似文献   

3.
The mode of transport of a nonphosphorylated adenosine analog, 5'-deoxyadenosine, was studied in murine leukemia L1210 cells. This compound is not subject to the action of intracellular nucleoside-trapping kinases, and its transport can be examined without regard for effects of experimental conditions on kinase activity. Accumulation of 5'-deoxyadenosine was rapid, and nonconcentrative, with equilibrium attained within 12 s at 37 degrees. Kinetic studies were carried out at 20 degrees. We found both a nonmediated (diffusion) and a mediated transport process. The latter had an apparent Km fo 115 micrometer, Vmax = 105 pmol/10(6) cells/min. Uptake of 5'-deoxyadenosine was inhibited by several heterologous nucleosides including adenosine, 2'-deoxyadenosine, thymine riboside, and inosine. Like 2'-deoxyadenosine, 5'-deoxyadenosine was more lipid-soluble than adenosine (from octanol/water partition studies). Compared with 5'-deoxyadenosine, adenosine had a much lower apparent Km (5 micrometer) and a higher Q10 over the 27-37 degrees range (3.0 versus 1.3). Data obtained with adenosine might, however, reflect properties of intracellular adenosine kinase interacting with a transport process.  相似文献   

4.
Membrane polypeptides (relative mass (Mr) 48,000--55,000) associated with the equilibrative transport of nucleosides were identified in cultured murine leukemia (L1210/C2) cells by site-specific photolabeling with [3H]nitrobenzylthioinosine ([3H]NBMPR). Growth of cells in the presence of tunicamycin resulted in the gradual conversion of 3H-labeled polypeptides to a form that migrated more rapidly (Mr 42,000--47,000) during sodium dodecyl sulfate (SDS)--polyacrylamide gel electrophoresis. When plasma membrane fractions were photolabeled and incubated with O-glycanase or endoglycosidase F, the [3H]NBMPR-labeled polypeptides migrated in SDS-polyacrylamide gels with the same mobility as native NBMPR-binding polypeptides, whereas incubation with either N-glycanase or trifluoromethane sulfonic acid converted [3H]NBMPR-labeled polypeptides to the more rapidly migrating form (Mr 41,000--48,000). These observations are consistent with the presence of N-linked oligosaccharides of the complex type on the NBMPR-binding polypeptides of L1210/C2 cells. Tunicamycin exposures that reduced incorporation of [3H]mannose into plasma membrane fractions by greater than 95% had little, if any, effect on either the affinity (Kd values, 0.1-0.2 nM) or abundance (Bmax values, 200,000--220,000 sites/cell) of NBMPR-binding sites, whereas uridine transport kinetics at 37 degrees C were altered in a complex way. Thus, although N-linked glycosylation is not required for insertion of the NBMPR-binding protein into the plasma membrane or for interaction of NBMPR with the high-affinity binding sites, it is important for function of at least one of the three nucleoside transporters expressed by L1210/C2 cells.  相似文献   

5.
Multidrug resistance (MDR) phenotype of L1210/VCR cell line, acquired by selection for vincristine (VCR), is predominantly mediated by P-glycoprotein (Pgp). Calcein/AM (Cal) was recently described as a fluorescent substrate for Pgp and may be used for measuring of transport activity of Pgp. Expression of Pgp in the cells prevents them to be loaded with the fluorescent marker. To detect the activity of Pgp, verapamil (Ver) or cyclosporine A (CsA) has to be used as Pgp inhibitors. Multidrug resistance protein (MRP), another drug efflux pump, may be inhibited by probenecid (Pro), i.e, the inhibitor of a wide variety of anion transporters. Ver, but not Pro, is able to induce the loading of L1210/CR cells by Cal that is measurable by fluorescence-activated cell sorter (FACS). Another dye, fluo-3/AM (F-3), has a similar behaviour like Cal. Using confocal microscopy we have proved that L1210/VCR cells, in contrast to parental sensitive cells, are not loaded with F-3. Marking of cells with the dye can be achieved using inhibitors of Pgp like Ver or CsA but not by Pro. These results indicate that F-3 is usable for detection of Pgp function in various MDR tissue cells.  相似文献   

6.
Nucleoside permeation across mammalian cell membranes is complex with at least four distinct transporters known. Two of these (es and ei) are equilibrative (facilitated diffusion) carriers that have been studied is considerable detail. The other two (cif and cit) are concentrative, Na(+)-dependent carriers. A major obstacle to the characterization of the latter two mechanisms has been the lack of suitable model systems expressing only a single nucleoside transport activity. The present study describes the isolation of a cell line that has cif as its sole nucleoside transporter. L1210/MC5-1 cells, which have es and cif transport activity, were mutagenized and plated in soft agar containing two cytotoxic nucleosides (tubercidin (7-deazaadenosine) and cytosine arabinoside) that are substrates for es but not cif. A clonal line (L1210/MA-27.1) was isolated which retained the capacity for Na(+)-dependent [3H]formycin B transport but was unable to transport [3H]thymidine, a substrate for es but not cif. Failure of the mutant to transport thymidine was also demonstrated by the inability of thymidine (with adenine as a purine source) to rescue these cells from methotrexate toxicity. Furthermore, the mutant lacked nitrobenzylthioinosine (NBMPR) binding activity (an integral part of the es transporter) as demonstrated by reversible NBMPR binding and photoaffinity labeling with [3H]NBMPR. Loss of es transport activity was also demonstrated by the failure of NBMPR to affect the toxicity of 2-chlorodeoxyadenosine (IC50 approximately 30 nM) in L1210/MA27.1 cells. In contrast, NBMPR decreased the IC50 for 2-chlorodeoxyadenosine from 100 to 30 nM in the parental L1210/MC5-1 cell line. These results are consistent with the mechanism of NBMPR potentiation of 2-chlorodeoxyadenosine toxicity in L1210 cells being a blockade of efflux via es while the nucleoside is pumped into the cells by the concentrative cif carrier.  相似文献   

7.
Summary Mouse lymphoma L1210 cells maintained in vitro at a high cell density for a certain time period adapted themselves to the in vitro environment and were able to grow indefinitely. From these adapted cells, more than 30 clones were isolated. They all had much higher activity to take up cystine than the original L1210 cells, supporting a previous view that the deficiency of the cystine uptake limits the survival and growth of L1210 cells in vitro. The cystine uptake of one cloned cell line was characterized. The enhanced uptake of cystine in these cells was mainly mediated by a Na+-independent, saturable system and was potently inhibited by glutamate and some other anionic amino acids, but less by aspartate. Such activity of cystine uptake was not observed in the original L1210 cells. The results suggest that, upon adaptation in vitro, L1210 cells acquire a new cystine transport activity necessary for survival and growth in vitro.  相似文献   

8.
L1210 mouse leukemia cells exhibit two distinct types of nucleoside transport activity that have similar kinetic properties and substrate specificity, but differ markedly in their sensitivity to the inhibitor nitrobenzylthioinosine (NBMPR) (Belt, J. A. (1983) Mol. Pharmacol. 24, 479-484). It is not known whether these two transport activities are mediated by a single protein or by separate and distinct nucleoside transport proteins. We have isolated a mutant from the L1210 cell line that has lost the NBMPR-insensitive component of nucleoside transport, but retains NBMPR-sensitive transport. In the parental cell line 20-40% of the nucleoside transport activity is insensitive to 1 microM NBMPR. In the mutant, however, uridine and thymidine transport are almost completely inhibited by NBMPR. Consistent with the loss of NBMPR-insensitive transport, the mutant cells can be protected from the toxic effects of several nucleoside analogs by NBMPR. In contrast, the toxicity of the same analogs in the wild type cells is not significantly affected by NBMPR, presumably due to uptake of the nucleosides via the NBMPR-insensitive transporter. On the other hand, NBMPR-sensitive transport in the mutant appears to be unaltered. The mutant is not resistant to cytotoxic nucleosides in the absence of NBMPR and the cells retain the wild type complement of high affinity binding sites for NBMPR. Furthermore, the affinity of the binding site for the inhibitor is similar to that of parental L1210 cells. These results suggest that NBMPR-sensitive and NBMPR-insensitive nucleoside transport in L1210 cells are mediated by genetically distinct proteins. To our knowledge this is the first report of a mutant deficient in NBMPR-insensitive nucleoside transport.  相似文献   

9.
In mediating the entry of adenosine into mouse erythrocytes and mouse leukaemia L1210 cells, nucleoside transport systems were stereoselective, showing a marked preference for the D-enantiomer of adenosine (D-Ado). Inward zero-trans fluxes of the mirror-image isomer, L-adenosine (L-Ado), in those cells were slow relative to those of D-Ado. Contributing to L-Ado fluxes in both cell types were (i) a transporter-mediated process of high nitrobenzylthioinosine-sensitivity and (ii) simple diffusion.  相似文献   

10.
Two equilibrative (facilitated diffusion) nucleoside transport processes and a concentrative Na(+)-dependent co-transport process contribute to zero-trans inward fluxes of nucleosides in L1210 mouse leukemia cells. Na(+)-linked inward adenosine fluxes in L1210/AM cells (a clone deficient in adenosine, deoxyadenosine, and deoxycytidine kinase activities) were measured as initial rates of [3H]adenosine influx in medium containing Na+ salts and 10 microM dipyridamole. The Na(+)-linked transporter distinguished between the D- and L-enantiomers of adenosine, the latter being a virtual nonpermeant in the initial-rate assay. Adenine arabinoside, inosine, 2'-deoxyadenosine and 2'-deoxyadenosine derivatives with halogen atoms at the purine C-2 position were recognized as substrates of the Na(+)-linked system because of their inhibition of adenosine (10 microM) fluxes under the condition of Na(+)-dependence with IC50 values ranging between 25 and 183 microM; uridine, deoxycytidine, and cytosine arabinoside (each at 400 microM) inhibited adenosine fluxes by 10-40%. Inward Na(+)-linked adenosine fluxes were saturable with respect to extracellular adenosine and Na+ concentrations [( Na+]o); Km and Vmax values for adenosine influx were 9.4 +/- 2.6 microM and 1.67 +/- 0.2 pmol/microliter cell water/s when [Na+]o was 100 mM. The stoichiometry of Na+:adenosine co-transport, determined by Hill analysis of the dependence of adenosine fluxes on [Na+]o, was 1:1. The thiol-reactive agents, N-ethylmaleimide (NEM), showdomycin and p-chloromercuriphenylsulphonate (pCMPS), inhibited Na(+)-linked adenosine fluxes with IC50 values of 40, 10, and 2 microM, respectively. This inhibition was partially reversed by the presence of adenosine in incubation media containing pCMPS, but not NEM. Thiol groups accessible to pCMPS may be involved in substrate recognition by the transporter and in the permeation step.  相似文献   

11.
L1210 murine leukemia cells have two nucleoside transport activities that differ in their sensitivity to nitrobenzylmercaptopurine riboside (NBMPR). This study re-examines NBMPR-insensitive nucleoside transport in these cells and finds that it is mediated by two components, one Na(+)-dependent and the other Na(+)-independent. A mutant selected previously for loss of NBMPR-insensitive transport lacks only the Na(+)-independent activity. When NBMPR is used to block efflux via the NBMPR-sensitive transporter, uptake of formycin B (a nonmetabolized analog of inosine) is concentrative in both the parental and mutant cells, but the intracellular concentration of the nucleoside is 5-fold lower in the parental cells. Decreased accumulation of formycin B in the parental cells is due to efflux of the nucleoside via the NBMPR-insensitive, Na(+)-independent transporter that the mutant lacks. The Na(+)-dependent transporter appears to accept most purine, but not pyrimidine, nucleosides as substrates. Two exceptions are uridine, a good substrate, and 7-deazaadenosine, a poor substrate. In contrast, all of the nucleosides tested are substrates for the Na(+)-independent transporter. We conclude that L1210 cells have three distinct nucleoside transporters and that the specificity of the Na(+)-dependent transporter is similar to that of one of the two Na(+)-dependent nucleoside transporters seen in mouse intestinal epithelial cells.  相似文献   

12.
A binding component with a high affinity for 5-methyltetrahydrofolate (KD = 0.11μm) is present on the external surface of L1210 cells. The amount of binder (1 pmol/mg protein) corresponds to 8 × 104 sites per cell. The participation of this component in the high-affinity 5-methyltetrahydrofolate/methotrexate transport system is supported by similarities in the KD values for 5-methyltetrahydrofolate and methotrexate binding and the Kt values of these compounds for transport. Relative affinities for other folate substrates (aminopterin, 5-formyltetrahydrofolate, and folate) and various competitive inhibitors (thiamine pyrophosphate, ADP, AMP, arsenate, and phosphate) are also similar for both the binding component and the transport system. The measured binding activity does not represent low-temperature transport of substrate into cells, since it is readily saturable with time and is eliminated by either washing the cells with buffer or by the addition of excess unlabeled substrate.  相似文献   

13.
Uptake of folate by L1210 cells in mediated by a transport system whose primary substrate is adenine. This conclusion is based upon the following evidence: (a) Folate uptake is inhibited competitively by adenine; (b) The Kt for folate transport (430 μM) is comparable to the Ki (450 μM) for folate inhibition of adenine transport; (c) The Kt for adenine transport (21 μM) agrees with the Ki (17 μM) for inhibition of folate transport by adenine; (d) The adenine analogs, 1-methyl-3-isobutylxanthine and 6-mercapto-purine, each inhibit folate and adenine transport to a comparable degree; and (e) Rates of folate and adenine uptake vary in parallel fashion during growth of L1210 cells.  相似文献   

14.
The effects of pentoxifylline (PTX) on intracellular accumulation of doxorobicin (DOX), DOX cytotoxicity and expression of Pgp in multidrug resistant L1210/VCR cell line were investigated. PTX (100 mg/l) was able to enhance the DOX accumulation in resistant cells. The maximum intracellular levels of DOX were reached after treatment with PTX for 24 hours (total duration of PTX-treatment was 72 hours). The levels of mdrl mRNA (measured by RT-PCR method) were decreased 2-fold in the presence of 100 mg/l PTX (minimum reached within 48 hours) in comparison to control cells.  相似文献   

15.
Nucleoside transport processes can be classified by the transport mechanism, e = equilibrative and c = concentrative, by the sensitivity to inhibition by nitrobenzylthioinosine (NBMPR), s = sensitive and i = insensitive, and also by permeant selectivity. To characterize nucleoside transport in acute promyelocytic NB4 cells, nucleoside transport was resolved into different components by selective elimination of transport processes with NBMPR and with Na+-deficient media. Initial transport rates were estimated from time course experiments. For adenosine, uridine, and formycin B, equilibrative transport accounted for approximately 60% of their uptake, with ei and es transport contributing almost equally, and Na+-dependent transport accounting for the remaining 40% of the total uptake. Thymidine uptake was mediated exclusively by equilibrative systems with ei and es systems each contributing 50% to total uptake. Adenosine accumulated above equilibrative concentrations, suggesting that a concentrative transport process was active and/or that metabolism led to adenosine's accumulation. Formycin B, a nonmetabolizable analog, also accumulated in the cells, supporting the concentrative potential of the Na+-dependent transporter. Kinetic analyses also provided evidence for three distinct high affinity transport mechanisms. NBMPR binding assays indicated the presence of two high affinity (Km 0.10 and 0.35 nM) binding sites. In conclusion, NB4 cells express ei and es transport, as well as a large ci transport component, which appears to correspond to cif (f = formycin B or purine selective) nucleoside transport, not previously described in human cells. © 1996 Wiley-Liss, Inc.  相似文献   

16.
N-acetyltransferases (NATs) are recognized to play a key role in the primary step of arylamine compounds metabolism. Polymorphic NAT is coded for rapid or slow acetylators, which are being thought to involve cancer risk related to environmental exposure. Berberine has been shown to induce apoptosis and affect NAT activity in human leukemia cells. The purpose of this study is to examine whether or not berberine could affect arylamine NAT activity and gene expression (NAT mRNA) and the levels of NAT protein in mouse leukemia cells (L 1210). N-acetylated and non-N-acetylated AF were determined and quantited by using high performance liquid chromatography. NAT mRNA was determined and quantited by using RT-PCR. The levels of NAT protein were examined by western blotting and determined by using flow cytometry. Berberine displayed a dose-dependent inhibition to cytosolic NAT activity and intact mice leukemia cells. Time-course experiments indicated that N-acetylation of AF measured from intact mice leukemia cells were inhibited by berberine for up to 24 h. The NAT1 mRNA and NAT proteins in mouse leukemia cells were also inhibited by berberine. This report is the first demonstration, which showed berberine affect mice leukemia cells NAT activity, gene expression (NAT1 mRNA) and levels of NAT protein.  相似文献   

17.
Methotrexate transport in L1210 cells is mediated by a carrier protein that can bind organic and inorganic phosphate compounds in addition to the various folate substrates. The photoaffinity labeling agent, 8-azidoadenosine 5'-monophosphate (8-azido-AMP), also interactis (Ki = 140 microM) with the receptor site for this transport system, and upon irradiation with ultraviolet light, irreversibly inhibits methotrexate uptake. Protection against this inactivation is afforded by either a substrate (methotrexate) or a competitive inhibitor (inorganic phosphate). The light-induced reaction proceeds rapidly (t1/2 = 2 min at 23 degrees C under the conditions described) and produces half-maximal reduction in the transport rate when the 8-azido-AMP concentration is 65 microM. complete photoinactivation of methotrexate transport could not be obtained from a single exposure to 8-azido-AMP (up to 1.0 mM), but it could be achieved by the repetitive illumination of cells in a fresh medium. The phosphate and folate/adenine transport systems of L1210 cells are not affected by irradiation in the presence of 8-azido-AMP.  相似文献   

18.
19.
Cytochalasin B competitively inhibits the transport of uridine and thymidine by Novikoff rat hepatoma cells growing in suspension culture with apparent Ki''s of 2 and 6 µM, respectively, but has no effect on the intracellular phosphorylation of the nucleosides. Choline transport is not affected by cytochalasin B. Results from pulse-chase experiments indicate that cytochalasin B has no direct effect on the synthesis of RNA, DNA, or uridine diphosphate-sugars. The inhibition of uridine and thymidine incorporation into nucleic acids by cytochalasin B is solely the consequence of the inhibition of nucleoside transport.  相似文献   

20.
The effect of exposure of L 1210 mouse leukemia cells to artificially generated air ions on the activity of membrane Na, K-ATPase in the cells was investigated. The exposure of cells to air ions of both signs gave identical results, i.e. diminution of transport activity of the enzyme, measured by radioactive 86Rb transport into the cell (ouabain-dependent). Passive ouabain-independent transport of Rb+ into the cells remained unchanged in the air ion-treated cells, as did the passive efflux of the radioisotope from preloaded cells. The possible explanation of the phenomena observed is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号