首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary To raise the yields for the production of 14C-labelled zearalenone in Fusarium cultures the influence of growth conditions and known effectors or precursors of toxin biosynthesis was studied. Benzoic acid and 2,4-dihydroxybenzoic acid used as precursors decreased toxin formation; in the presence of different pesticides such as 2,4-dichlorophenoxyacetic acid, however, toxin production increased up to 140%. The known pathway of zearalenone biosynthesis could be confirmed from the relative extents of 13C-incorporation into the zearalenone molecule by incubating Fusarium graminearum DSM 4529 with d-(+)-[1-13C]glucose as carbon source. When grown in the presence of d-[U-14C]glucose or [2-14C]malonic acid the strain produced [14C]zearalenone with specific activities of 0.07 and 0.09 Ci/mg, the 14C-incorporation rates being 0.34% and 0.48%, respectively.  相似文献   

3.
Whole filaments of autotrophically grown Anabaena cylindrica and heterocysts isolated from them will assimilate and metabolise exogenous glucose. Radiorespirometric experiments suggest the operation of the pentose phosphate pathway. Glucose-6-phosphate and 6-phosphogluconate dehydrogenase are present in heterocysts at 6–8 times the levels found in vegetative cells whereas enzymes of the reductive pentose phosphate and glycolytic pathways are barely or not detectable. Glucose-6-phosphate dehydrogenase in vegetative cells, but not in heterocysts is subject to inhibition by ribulose diphosphate.  相似文献   

4.
5.
Labelled ketone bodies were produced readily from [U-(14)C]palmitate, [2-(14)C]palmitate and [1-(14)C]glycerol by sheep rumen-epithelial and liver tissues in vitro. On a tissue-nitrogen basis, both tissues had similar capacities for ketogenesis. Palmitate was a ketogenic substrate in both rumen-epithelial tissue and liver, and more of its (14)C appeared in ketone bodies than in the (14)CO(2) liberated. Glycerol was actively metabolized to ketone bodies, but more readily underwent complete oxidation to carbon dioxide; this complete oxidation was most pronounced in rumen-epithelial tissue from ketotic ewes. These experiments with labelled compounds confirm earlier observations that rumen-epithelial tissue, like liver, actively forms ketone bodies from long-chain fatty acids and show further that normal rumen-epithelial tissue can convert palmitate into ketone bodies as readily as into carbon dioxide. Free glycerol, which is metabolized only by liver tissue in non-ruminants, is also metabolized by rumen epithelium. The rumen epithelium thus has unique metabolic capacity among extrahepatic tissues.  相似文献   

6.
Abstract: Superoxide dismutase (SOD) activity was assayed in vegetative cells, heterocysts and akinetes of Anabaena cylindrica Lemm. The iron-containing isoenzyme (Fe-SOD) was in all cases predominant over the manganese-containing isoenzyme (Mn-SOD). Differentiated cells maintained the same relative content of the two enzymes as in vegetative cells. However, heterocysts and akinetes contained only 20 and 35%, respectively, of the total SOD activity present in vegetative cells.
Both Mn-SOD and Fe-SOD activities increased in all types of cells isolated from A. cylindrica grown at high light intensity. The increase of SOD in heterocysts paralleled that of nitrogenase, suggesting a role of SOD in the protection mechanism of nitrogenase.  相似文献   

7.
Abstract The present communication defines the conditions under which thioredoxin activates glutamine synthetase from Anabaena cylindrica . Effects are obtained at pH values around neutrality, and the activation is affected by Mg2+ in the assays. The thioredoxin systems from A. cylindrica and spinach are functionally interchangeable in the activation of glutamine synthetase. The enzyme is efficiently activated by thioredoxinm and also by thioredoxinf, but at much higher concentrations. Thioredoxinm has previously been shown to activate NADPH-dependent malate dehydrogenase and isocitrate dehydrogenase from cyanobacteria. It is speculated that thioredoxinm plays a role in the differentiation of vegetative cells to heterocysts.  相似文献   

8.
9.
N2 fixation (acetylene reduction) has been studied with heterocysts isolated from Anabaena cylindrica and Anabaena 7120. In the presence of ATP and at very low concentrations of sodium dithionite, reducing equivalents for activity of nitrogenase in these cells can be derived from several compounds. In the dark, D-glucose 6-phosphate, 6-phosphogluconate and DL-isocitrate support acetylene reduction via NADPH. In the light, reductant can be generated by Photosystem I.  相似文献   

10.
—(1) The effects of aminooxyacetic acid, ouabain and Ca2+ on the compartmentation of amino acid metabolism have been studied in slices of brain incubated with sodium-[1-14C]acetate, l-[U-14C]glutamate and l-[U-14C]aspartate as tracer metabolites. (2) Aminooxyacetic acid (10-3 m) inhibited the labelling of aspartate from [14C]acetate and [14C]glutamate, as well as the incorporation of label from [14C]aspartate into glutamate and glutamine. It also inhibited the labelling of GABA from all three radioactive precursors, as would be anticipated if there was inhibition of several transaminases as well as glutamate decarboxylase. The RSA of glutamine labelled from [1-14C]acetate was increased. This finding indicated that the glutamate pool which is utilized for glutamine formation is associated with glutamate dehydrogenase, and this enzyme appears to be related to the ‘synthetic tricarboxylic acid cycle’. AOAA exerted its major inhibitory effects on the citric acid‘energy cycle’with which transaminases are associated. (3) Ouabain (10-5 m) inhibited the labelling of glutamine to a much greater extent than the labelling of glutamate from [1-14C]acetate. It also caused leakage of amino acids from the tissue into the medium. Its effect on the glutamate–glutamine system was interpreted to be a selective inhibition of the 'synthetic’citric acid cycle. (4) The omission of Ca2+ from the incubation medium was associated with formation of glutamine with RSA less than 1·0 when labelled from [U-14C]glutamate, [U-14C]aspartate and lower than normal when labelled from [1-14C]acetate.  相似文献   

11.
The fatty acid composition of akinetes, heterocysts and vegetativecells in Anabaena cylindrica was examined. Akinetes and heterocystscontained much less -linolenic acid than did vegetative cells.Furthermore, akinetes and heterocysts contained fatty acidswith less unsaturation as compared with vegetative cells. (Received February 19, 1972; )  相似文献   

12.
1. [14C]Acetylcholine synthesis and 14CO2 production from [U-14C]glucose has been measured in tissue prism preparations from human neocortex. 2. Electron micrographs of prisms from human and rat neocortex show that both contain intact synaptic endings with evenly-distributed vesicles and normal-appearing mitochondria, but only poorly preserved cell body structure. 3. Synthesis of [14C]acetylcholine in prisms from rat neocortex is similar to estimates for turnover in vivo. Synthesis in prisms from human neocortex is 18% of that in rat tissue and 64% of that in tissue from baboon neocortex for incubations performed in 31 mM-K+. 4. Investigations of prisms prepared from rat brains stored at 37 degrees C after death revealed that synthesis of [14C]acetylcholine in the presence of 31 mM-K+ was greatly decreased within 30 min of post-mortem incubation, whereas synthesis at 5 mM-K+ and production of 14CO2 at both K+ concentrations were only significantly affected after longer periods. Changes were similar in neocortex and striatum. Thus human autopsy material is unlikely to be suitable for use with this system. 5. Investigations using animal models suggest that [14C]acetylcholine synthesis and 14CO2 production are not affected by surgical or anaesthetic procedures. 6. Neither [14C]acetylcholine synthesis nor 14CO2 production in human prisms was significantly changed with age between 15 and 68 years. 7. Samples from patients with the dementing condition Alzheimer's disease showed a significant decrease in [14C]acetylcholine synthesis to 47% of normal samples and a significant increase of 39% in production of 14CO2.  相似文献   

13.
The hormonal control of [14C]glucose synthesis from [U-14C-A1dihydroxyacetone was studied in hepatocytes from fed and starved rats. In cells from fed rats, glucagon lowered the concentration of substrate giving half-half-maximal rates of incorporation while it had little or no effect on the maximal rate. Inhibitors of gluconeogenesis from pyruvate had no effect on the ability of the hormone to stimulate the synthesis of [14C]glucose from dihydroxyacetone. The concentrations of glucagon and epinephrine giving half-maximal stimulation from dihydroxacetone were 0.3 to 0.4 mM and 0.3 to 0.5 muM, respectively. The meaximal catecholamine stimulation was much less than the maximal stimulation by glucagon and was mediated largely by the alpha receptor. Insulin had no effect on the basal rate of [14C]clucose synthesis but inhibited the effect of submaximal concentration of glucagon or of any concentration of catecholamine. Glucagon had no effect on the uptake of dihydroxyacetone but suppressed its conversion to lactate and pyruvate. This suppression accounted for most of the increase in glucose synthesis. In cells from gasted rats, where lactate production is greatly reduced and the rate of glucose synthesis is elevated, glucagon did not stimulate gluconeogenesis from dihydroxyacetone. Findings with glycerol as substrate were similar to those with dihyroxyacetone. Ethanol also stimulated glucose production from dihydroxyacetone while reducing proportionately the production of lactate. Ethanol is known to generate reducing equivalents fro clyceraldehyde-3-phosphate dehydrogenase and presumably thereby inhibits carbon flux to lactate at this site. Its effect was additive with that of glucagon. Estimates of the steady state levels of intermediary metabolites and flux rates suggested that glucagon activated conversion of fructose diphosphate to fructose 6-phosphate and suppressed conversion of phosphoenolpyruvate to pyruvate. More direct evidence for an inhibition of pyruvate kinase was the observation that brief exposure of cells to glucagon caused up to 70% inhibition of the enzyme activity in homogenates of these cells. The inhibition was not seen when the enzyme was assayed with 20 muM fructose diphosphate. The effect of glucagon to lower fructose diphosphate levels in intact cells may promote the inhibition of pyruvate kinase. The inhibition of pyruvate kinase may reduce recycling in the pathway of gluconeogenesis from major physiological substrates and probably accounts fromsome but not all the stimulatory effect of glucagon.  相似文献   

14.
The thylakoids of vegetative cells of the filamentous cyanobacterium, Anabaena cylindrica, are capable of oxygen-evolving photosynthesis and contain both Photosystems I and II (PSI and PSII). The heterocysts, cells specialized for nitrogen fixation, do not produce oxygen and lack Photosystem II activity, the major accessory pigments, and perhaps the chlorophyll a associated with PSII. Freeze-fracture replicas of vegetative cells and of heterocysts reveal differences in the structure of the thylakoids. A histogram of particle sizes on the exoplasmic fracture face (E-face, EF) of vegetative cell thylakoids has two major peaks, at 75 and 100 A. The corresponding histogram for heterocyst thylakoids lacks the 100 A size class, but has a very large peak at about 55 A with a shoulder at 75 A. Histograms of protoplasmic fracture face (P-face, PF) particle diameters show single broad peaks, the mean diameter being 71 A for vegetative cells and 64 A for heterocysts. The thylakoids of both cell types have about 5600 particles/micrometers2 on the P-face. On the E-face, the density drops from 939 particles/micrometers2 on vegetative cell thylakoids to 715 particles/micrometers2 on heterocyst thylakoids. The data suggest that the 100 A E-face particle of vegetative cell thylakoids is a PSII complex. The 55 A EF particle of heterocysts may be part of the nitrogenase complex or a remnant of the PSII complex. The role of the 75 A EF particle is unknown. Other functions localized on cyanobacterial thylakoids, such as respiration and hydrogenase activity, must be considered when interpreting the structure of these complex thylakoids.  相似文献   

15.
Glutamine synthetase (L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2) from Anabaena cylindrica was inhibited by alanine, glycine, serine and aspartate. The effects of alanine and serine were uncompetitive with respect to glutamate, while those of glycine and asparatate were uncompetitive with respect to glutamate, while those of glycine and aspartate were non-competitive and mixed type respectively. Different pairs of amino acids and their various combinations caused a cumulative inhibition of the enzyme activity. Glutamine synthetase was also inhibited by ADP and AMP and both nucleotides affected the enzyme competitively with respect to ATP and non-competitively for glutamate. Inorganic pyrophosphate, between 2 and 3 mM, produced a very pronounced inhibiton of enzyme activity. The inhibition by PPi was uncompetitive for ATP. Various combinations of the adenine nucleotides, PPi and Pi exerted a cumulative inhibitory effect on the enzyme activity, as did the amino acids, in different combinations with either adenine nucleotides, PPi or Pi. The effects of the adenine nucleotides and the amino acids were more pronounced at higher concentrations of ammonia. Except for serine similar responses of these effectors were obtained with increasing concentrations of Mg2+. It is proposed that changes in the free concentrations of Mg2+ are important in energy-dependent regulation of the enzyme activity in this alga.  相似文献   

16.
17.
The biosynthesis of isotopically labeled L-glutamic acid by the microorganism Brevibacterium flavum was studied with a variety of carbon-13-enriched precursors. The purpose of this study was twofold: to develop techniques for the efficient preparation of labeled L-glutamate with a variety of useful labeling patterns which can be used for other metabolic studies, and to better understand the metabolic events leading to label scrambling in these strains. B. flavum, which is used commercially for the production of monosodium glutamate, has the capability of utilizing glucose or acetate as a sole carbon source, an important criterion from the standpoint of developing labeling strategies. Unfortunately, singly labeled glucose precursors lead to excessive isotopic dilution which reduces their usefulness. Studies with [3-13C]pyruvate indicate that this problem can in principle be overcome by using labeled three-carbon precursors; however, conditions could not be found which would lead to an acceptable yield of isotopically labeled L-glutamate. In contrast, [1-13C]- or [2-13C]acetate provides relatively inexpensive, readily available precursors for the production of selectively labeled, highly enriched L-glutamate. The preparation of L-[15N]glutamate from [15N]ammonium sulfate was carried out and is a very effective labeling strategy. Analysis of the isotopic distribution in labeled glutamate provides details about the metabolic pathways in these interesting organisms.  相似文献   

18.
Metabolically active heterocysts isolated from wild-type Anabaena sp. strain CA showed high rates of light-dependent acetylene reduction and hydrogen evolution. These rates were similar to those previously reported in heterocysts isolated from the mutant Anabaena sp. strain CA-V possessing fragile vegetative cell walls. Hydrogen production was observed with isolated heterocysts. The ratio of C2H4 to H2 produced ranged from 0.9 to 1.2, and H2 production exhibited unique biphasic kinetics consisting of a 1 to 2-min burst of hydrogen evolution followed by a lower, steady-state rate of hydrogen production. This burst was found to be dependent upon the length of the dark period immediately preceding illumination and may be related to dark-to-light ATP transients. The presence of 100 nM NiCl2 in the growth medium exerted an effect on both acetylene reduction and hydrogen evolution in the isolated heterocysts from strain CA. H2-stimulated acetylene reduction was increased from 2.0 to 3.2 mumol of C2H4 per mg (dry weight) per h, and net hydrogen production was abolished. A phenotypic Hup- mutant (N9AR) of Anabaena sp. strain CA was isolated which did not respond to nickel. In isolated heterocysts from N9AR, ethylene production rates were the same under both 10% C2H2-90% Ar and 10% C2H2-90% H2 with or without added nickel, and net hydrogen evolution was not affected by the presence of 100 nM Ni2+. Isolated heterocysts from strain CA were shown to have a persistent oxygen uptake of 0.7 mumol of O2 per mg (dry weight) per h, 35% of the rate of whole filaments, at air saturating O2 levels, indicating that O2 impermeability is not a requirement for active heterocysts.  相似文献   

19.
Ammonia at concentrations above 1×10-5 M inhibits uptake of nitrate in the nitrogen-fixing blue-green alga, Anabaena cylindrica. This inhibition takes place both in the light and in the dark. The rate of nitrate uptake is stimulated by light. Addition of relatively high concentrations of nitrate (1–10 mM) reversibly inhibits ammonia uptake. FCCP, an uncoupler of phosphorylation, inhibits both nitrate and ammonia uptake. Ammonia may inhibit nitrate uptake by reducing the supply of energy (ATP) for active nitrate transport.Abbreviations FCCP carbonyl cyanide p-trifluoromethoxy-phenylhydrazone - CCCP carbonyl cyanide m-chlorophenyl-hydrazone  相似文献   

20.
The specific radioactivity of urinary hippurate glycine was determined after injecting guinea pigs with benzoate and either dl-[2-(14)C]glutamate or dl-[5-(14)C]glutamate. The isotope dilution factor for the formation of [(14)C]glycine was significantly greater (30%) with C-2 labelled glutamate. With either form of labelled glutamate the hippurate glycine was largely carboxyl-group labelled. The observations suggest a route for the incorporation of glutamate carbon into glycine that involves C-5 but not C-2. A hypothesis for glycine biosynthesis from l-glutamate is advanced, consistent with these findings, that includes conversion of l-glutamate to 4-hydroxy-2-oxoglutarate, the scission of the latter to glyoxylate and pyruvate, and the formation of glycine by transamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号