首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bud break in apple (Malus domestica Borkh cv. Golden Delicious) was induced by 1-(3,5-dichlorophenyl)-3-nitroguanidine or 1-(-ethylbenzyl)-3-nitroguanidine. The optimum dose was 1000 M. An increase in bud fresh weight, dry weight, and length was more prominent in buds treated with 1-(-ethylbenzyl)-3-nitroguanidine than in those treated with 1-(3,5-dichlorophenyl)-3-nitroguanidine. The sterol compositional changes during bud break induced by 1-(3,5-dichlorophenyl)-3-nitroguanidine were similar to those induced by 1-(-ethylbenzyl)-3-nitroguanidine. -Sitosterol and sitosteryl ester were the predominant sterols. The amounts of these sterols increased immediately after dormancy was broken and then declined. A decrease in the percentage of the sitosterol and sitosteryl ester was accompanied by an increase in campesterol and stigmasterol at the beginning of rapid growth. A decrease in the ratio of free sterols to phospholipids and an increase in the ratio of campesterol + stigmasterol to sitosterol upon breaking dormancy occurred in apple buds induced by 1-(3,5,-dichlorophenyl)-3-nitroguanidine or 1-(-ethylbenzyl)-3-nitroguanidine. 1-(m-Methoxybenzyl)-3-nitroguanidine did not affect breaking of apple bud dormancy and also had no effect on changes in sterol content. The sterols in apple buds were confirmed by gas chromatography-mass spectrometry.  相似文献   

2.
The total amount of fatty acids in the mono- (MGDG) and diglycosyl diglyceride (DGDG) and more polar lipid fractions of frozen Ceratodon purpureus shoots was 4.6, 3.4 and 4.0 mg/g dry weight, respectively. The respective values for the tops of frozen Pleurozium schreberi were 2.6, 3.3 and 3.8 mg/g dry weight. The molar ratios MGDG/DGDG and MGDG + DGDG/chlorophyll were 1.3 and 3.7, respectively, for C. purpureus and 0.8 and 3.5 for P. schreberi. In C. purpureus the main fatty acids in the MGDG fraction were C 18:3ω3 (44% of the total fatty acids) and C 16:3ω3 (26%); in the DGDG fraction C 18:3ω3 (70%); and in the more polar lipid fraction C 18: 3ω3 (26%) and C 16:0 (25%). The proportion of C 20 polyunsaturated fatty acids was 15, 12 and 19% of the total fatty acids found in the MGDG, DGDG and more polar lipid fractions, respectively. In P. schreberi the proportion of C 20 polyunsaturated fatty acids was high in all polar lipid fractions (47, 42 and 25% in MGDG, DGDG and more polar lipid fractions, respectively). In addition, MGDG and DGDG fractions contained abundantly C 18:3ω3 (32 and 45%, respectively), and the more polar lipid fraction both C 18: 3ω3 (24%) and C 16:0 (27%).  相似文献   

3.
B. D. Whitaker 《Planta》1986,169(3):313-319
The fatty-acid composition of polar lipids from fruit and leaf chloroplasts was compared in five Solanaceous and two cucurbit species. The acylated fatty acids in monogalactosyl diglycerides (MGDG) from leaf chloroplasts of all five Solanaceous species included substantial amounts of 7,10,13-hexadecatrienoic acid (16:3). In contrast, the MGDG from fruit chloroplasts of the Solanaceae contained very little of this plastid-specific polyunsaturate, and instead included a proportionately greater percentage of linoleic acid (18:2). In MGDG from leaf chloroplasts of two cucurbits, -linolenic acid (18:3) constituted 94–95% of the acylated fatty acids. Fruit-chloroplast galactolipids of the cucurbits had a greater abundance of 18:2, and hence a higher 18:2/18:3 ratio, than found in the corresponding leaf lipids. Among the phosphoglycerides, the unusual fatty acid 3-trans-hexadecenoate (trans-16:1) constituted from 15 to 24% of the acylated fatty acids in phosphatidyl glycerol (PG) from leaf chloroplasts (all species). In sharp contrast, trans-16:1 was virtually absent in PG from fruit chloroplasts of both Solanaceous and cucurbit species, and was replaced by a proportionate increase in the content of palmitate (16:0). The observed differences in the polar lipid fatty-acid composition of fruit and leaf chloroplasts are discussed in terms of the relative activity of several intrachloroplastic enzymes involved in lipid synthesis and fatty-acyl desaturation.Abbreviations MGDG monogalactosyldiglyceride - DGDG digalactosyl diglyceride - PC phosphatidyl choline - PE phosphatidyl ethanolamine - PG phosphatidyl glycerol  相似文献   

4.
Two breeding lines of “zero-erucic-acid” rapeseed (Brassica napus) were grown in climate chambers at a constant night temperature (12°C) and constant photoperiod (16 hours) but with different day temperatures (15, 20 and 25°C). Samples of leaves, siliques and immature seeds were analysed for total fatty acid pattern. The content of different acyl lipids and the fatty acid pattern of these lipids were also determined in some of the samples by use of preparative TLC followed by GLC of the fatty acids. The mature seeds produced by ten plants of each selection in each climate were analysed separately for total fatty acid composition. Mono- and digalactosyl diglycerides (MGDG, DGDG) were the predominant acyl lipids in leaves and siliques. In developing seeds they also were more abundant than the phospholipids, but in this case the neutral lipids, mainly triacylglycerols, contained about 95% of the total fatty acids. Large variations were found in the fatty acid composition of monogalactosyl diglyceride and digalactosyl diglyceride, isolated from leaves, siliques and immature seeds. The palmitic acid content of leaf MGDG was about 15 %, atypically high for MGDG from photosynthetic tissue. The linolenic acid content of the MGDG was about 45 %, 30 % and 10 % in the leaf, silique and seed tissues respectively. A hexadecatrienoic acid (16: 3) was found almost exclusively in the MGDG samples of leaves, siliques and immature seeds (about 25 %, 10 % and 3 % 16:3 respectively). The lipids of siliques — mainly photosynthetising tissue — were different from those of leaves and had especially high contents of stearic acid (6–12 % in the different lipids). For all lipid classes studied, leaves grown at the lowest day temperature had a slightly lower oleic and higher linolenic acid content than those grown at the highest temperature. On the other hand, increasing the day temperature caused a decreased level of oleic, an increased level of linoleic and an essentially unchanged level of linolenic acids in the mature seeds from both selections.  相似文献   

5.
Changes in fatty acid, phospholipid and galactolipid contents during cellular and organ differentiation in Aegle marmelos have been described. Decrease in phosphatidylinositol content and presence of 3-trans-hexadecenoic acid in phosphatidylglycerol were related to greening and shoot buds differentiation. The galactolipids level, the monogalactosyl diglyceride/digalactosyl diglyceride ratio and the linolenic acid level (mainly in monogalactosyl diglyceride) increased with the degree of differentiation, indicating the possible biogenesis of functional chloroplasts.Abbreviations 2,4-D 2,4 dichlorophenoxyacetic acid - BA benzylaminopurine - DW dry weight - FW fresh weight - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PG phosphatidylglycerol - PS phosphatidyl serine - MGDG monogalactosyl diglyceride - DGDG digalactosyl diglyceride - 16:0 palmatic acid - 18:0 stearic acid - 18:1 oleic acid - 18:2 linoleic acid - 18:3 linolenic acid - trans-16:1 3-trans-hexadecenoic acid  相似文献   

6.
The effect of iron chlorosis on mineral, thylakoid lipids and fatty acids composition of field grown peach tree leaves was studied. Significant differences were found in iron extracted by using , -dipyridyl (active iron), total iron, P, K, Cu and the P/Fe and Fe/Mn ratios. The levels of total chlorophyll, total glycolipids and phospholipids were reduced under iron chlorosis. A slight iron deficiency does not modify the fatty acid composition of thylakoid membranes, while a strong deficiency changes the proportion of some fatty acids.Abbreviations Chl chlorophyll - DGDG digalactosyldiglycerol - MGDG mono-galactosyldiglycerol - PC phosphatidycholine - PE phophatidylethanolamine - PG phophatidylglycerol - TLC thin layer chromatography - 16:0 palmitic acid - 16:1 palmitoleic acid - 16:lt trans-hexadecenoic - 18:0 steric acid - 18:1 oleic acid - 18:2 linoleic acid - 18:3 linolenic acid  相似文献   

7.
The labeling kinetics of the fatty acids of phosphatidylcholine (PC), phosphatidylglycerol (PG), monogalactosyldiglyceride (MGDG), and digalactosyldiglyceride (DGDG) were examined after 14CO2 feeding and incubation of leaf discs of Vicia faba over 72 hours in continuous light. The results indicate a rapid accumulation and turnover of radioactivity into PC and PG fatty acids (oleic acid in PC and oleic and palmitic acids in PG). Radioactivity accumulates in MGDG and DGDG fatty acids much more slowly and continuously over 72 hours. Most of this activity is found in linoleic and linolenic acids; very little activity is found in the more saturated fatty acids. Little or no desaturation occurs in situ in conjunction with the galactolipids. The results suggest that PC and PG may act as “carriers” for MGDG and DGDG fatty acid synthesis. Analyses of the labeling patterns of the molecular species of MGDG after 14CO2 and 14C-acetate feeding confirm that MGDG is formed by galactosylation of a preformed diglyceride containing predominantly unsaturated fatty acids.  相似文献   

8.
The building up of the two types of reaction centers, PS II and PS II, was investigated during the greening of Euglena gracilis Z cells in resting medium. The maximal values in the proportion of PS II centers (55%) and in the oxygen evolved per chlorophyll were reached at the outbreak of greening, when accumulation of galactolipids (MGDG and DGDG) rich in unsaturated fatty acids occurred, and when anionic lipids (SQDG and PG) emerged. As the greening progressed, the chlorophyll accumulation corresponded to a secondary enrichment in PS II centers, which built up more rapidly than PS II centers; correlatively, a general saturation of the fatty acids constitutive of all lipid classes took place.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DGDG digalactosyldiacylglycerol - FAME Tatty acid methyl esters - HEPES acide (N-[2-hydroxyethyl]piperazine-N-[2-ethane sulfonic] - MGDG monogalactosyldiacylglycerol - PC phosphatidylcholine - PE phosphatidylethanolamine - PG phosphatidylglycerol - PQ plastoquinone - PS I Photosystem I - PS II Photosystem II - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - SQDG sulfoquinovosyldiacylglycerol  相似文献   

9.
The galactose, glycerol, and fatty acids of mono- and digalactosyl diglycerides (MGDG and DGDG) have been separated and analyzed for 14C activity after 14CO2 feeding of Vicia faba leaf discs. Fully expanded and developing leaves were analyzed at time intervals following feeding during continuous illumination. In addition, fully expanded leaves were analyzed after similar times in complete darkness. In all cases, 14C was incorporated very rapidly into galactose, whereas glycerol and fatty acids were labeled much more slowly and over a longer period of time. The data are consistent with the galactosylation of a diglyceride to MGDG which is in turn galactosylated to DGDG. The data suggest that the formation of diglycerides suitable for galactosylation to MGDG is slow in comparison to the galactosylation process. It is also suggested that DGDG may be formed from more than one pool of MGDG. The complete analysis of the 14C incorporation into galactose appears to represent the only satisfactory method of comparing galactolipid synthesis by 14C incorporation. Estimates of comparative rates of synthesis of MGDG and DGDG have been made on this basis.  相似文献   

10.
Mono- and digalactosyldiacylglycerol (MGDG and DGDG) were isolated from the leaves of sixteen 16:3 plants. In all of these plant species, the sn-2 position of MGDG was more enriched in C16 fatty acids than sn-2 of DGDG. The molar ratios of prokaryotic MGDG to prokaryotic DGDG ranged from 4 to 10. This suggests that 16:3 plants synthesize more prokaryotic MGDG than prokaryotic DGDG. In the 16:3 plant Spinacia oleracea L. (spinach), the formation of prokaryotic galactolipids was studied both in vivo and in vitro. In intact spinach leaves as well as in chloroplasts isolated from these leaves, radioactivity from [1-14C]acetate accumulated 10 times faster in MGDG than in DGDG. After 2 hours of incorporation, most labeled galactolipids from leaves and all labeled galactolipids from isolated chloroplasts were in the prokaryotic configuration. Both in vivo and in vitro, the desaturation of labeled palmitate and oleate to trienoic fatty acids was higher in MGDG than in DGDG. In leaves, palmitate at the sn-2 position was desaturated in MGDG but not in DGDG. In isolated chloroplasts, palmitate at sn-2 similarly was desaturated only in MGDG, but palmitate and oleate at the sn-1 position were desaturated in MGDG as well as in DGDG. Apparently, palmitate desaturase reacts with sn-1 palmitate in either galactolipid, but does not react with the sn-2 fatty acid of DGDG. These results demonstrate that isolated spinach chloroplasts can synthesize and desaturate prokaryotic MGDG and DGDG. The finally accumulating molecular species, MGDG(18:3/16:3) and DGDG(18:3/16:0), are made by the chloroplasts in proportions similar to those found in leaves.  相似文献   

11.
An in vivo method of labelling lipid fractions in developing seeds of Brassica campestris using [1–14C] acetate has been developed. The “wick” method for introducing label into the intact plant is quite effective, safe and easy to use. The results obtained were reproducible and comparable to those reported earlier for seeds procured from greenhouse grown plants. The labelling pattern showed that rapid oil deposition began around 20 days after anthesis (DAA) and continued until about 45 DAA. The proportion of label in polar lipids declined and that in non-polar lipids increased during the phase of active oil synthesis. Among phospholipids, the label was incorporated mainly in phosphatidyl choline (PC), which was found to be the major fraction of phospholipids. During development, the two galactolipids i.e. monogalactosyl diglyceride (MGDG) and digalactosyl diglyceride (DGDG) followed patterns exactly opposite to each other. The content of the label in MGDG decreased, while that in DGDG increased, indicating the conversion of MGDG to DGDG during maturation.  相似文献   

12.
High irradiance (HI) and high temperature (HT) increased in chloroplasts the content of monogalactosyldiacylglycerol (MGDG) and decreased the contents of digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG), and phosphatidylinositol (PI). HI and HT accelerated the transformation of DGDG to MGDG. The contents of unsaturated fatty acids in chloroplasts increased, while those of saturated fatty acids decreased. The contents of total carotenoids, neoxanthin, violaxanthin, lutein, and -carotene increased first, then decreased. The content of chlorophyll decreased. HI caused the unfolding of thylakoids that was not resumed after a 72-h recovery.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

13.
The glycolipid fatty acid composition of Porphyridium purpureum on a solid medium was studied in the presence of Triton X-100 (TX), sodium desocycholate (SDC), sodium dodecyl sulphate (SDS) and cetyl trimethylammonium bromide (CTAB). TLC and GC/MS were used in determining the relative fatty acid compositions of mono-and digalactosyl diglycerides (MGDG and DGDG) and in assessing the MGDG/DGDG ratio. The most common fatty acids were palmitic (16:0), stearic (18:0), linoleic (18:2 ω6), arachidonic (20:4 ω6) and eicosapentaenoic (20:5 ω3) acids, the long-chain polyunsaturated acids being more abundant in DGDG; α-linolenic acid (18:3 ω3) was absent. TX and SDC in particular caused an increase in the saturation grade of both MGDG and DGDG fatty acids at very low concentrations (5–15 ppm). With a detergent concentration of 20 ppm a reversion of this tendency was sometimes found, and the fatty acid composition approached the controls again. The effects of SDS and CTAB were not as prominent. All the detergents studied increased the normal MGDG/DGDG ratio (0.3) to a maximum of ~ 1. The effect of increasing detergent concentration is not linear. The results suggest that in some cases very low detergent concentrations can be more effective than higher ones, a fact which may be important in algae growing in polluted waters.  相似文献   

14.
Changes in lipid composition were investigated on maize roots and shoots under aluminum stress. After 4d exposure to 100 microM Al, root growth was inhibited while shoot growth was not affected. In roots, the decrease of the DBI (double bond index) of total fatty acids may signal a decrease in membrane fluidity. The total lipids (TL) decreased by 49%, but phospholipids (PL), phosphatidylcholine (PC) and phosphatidylinositol (PI) increased to approximately 3-fold. The MGDG increased to 2-fold but no significant change was found in the DGDG. The steryl lipids (SL) increased by 69%. The SL/PL ratio decreased from 2.64 to 1.52 and the MGDG/DGDG ratio increased from 0.45 to 1.06 in roots of Al-stressed plants. Al leads to oxidative stress in roots of treated plants as indicated by the increase of malondialdehyde (MDA) concentrations. In shoots, changes in fatty acid composition were associated with an increase of the DBI in all lipid classes except that of the DGDG decreased. The PG was the lipid class which shows the large variation of fatty acid composition. No significant changes were found either for TL, PL, SL or MDA concentrations in shoots of Al-treated plants. While PE levels did not show significant change, PI and PG increased and PC decreased. However, the Al caused 87% decrease in the GL levels. The MGDG and DGDG decreased to 19- and 8-fold, respectively. The deleterious effects of Al on polar lipids could be caused by a direct intervention of Al on plasma membrane and/or alteration of cell metabolism.  相似文献   

15.
The effect of changed environmental conditions on the content of glycolipids and component fatty acids was studied in the moss species Pleurozium schreberi and Ceratodon purpureus. The mosses were collected from their natural habitats when frozen and covered by snow. After one week's exposure to rhythmic light (150 μE m?2 s?1, 12 h 17°C) no changes were observed in the absolute amount of fatty acids in either mono- (MGDG) or diglycosyl diglyceride (DGDG) fractions. Some changes were recorded in the content of individual fatty acids, however. The long chain, polunsaturated fatty acids (mainly 20:4ω6 and 20:5ω3 in P. schreberi and in addition 16:3ω3 and 18:3ω3 in C. purpureus) tended to decrease and the shorter chain, more saturated ones increased correspondingly. Under continuous light conditions (17°C) the total amount of fatty acids decreased in both MGDG and DGDG fractions, more significantly at 150 than at 75 μE m?2 s?1. This was due to the accelerated degradation and/or decreased synthesis of polyunsaturated fatty acids, which in this case was not totally compensated by the increase in shorter chain, more saturated ones.  相似文献   

16.
The major glycolipids in the fully developed and young needle tissues of lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) were monogalactosyl diglyceride (MGDG) digalactosyl diglyceride (DGDG), and sulphoquinovosyl diglyceride (SQDG). The concentration of these glycolipids was considerably higher in the fully developed needles than in the young needles. The major fatty acid in the MGDG fraction (from both tissues) and DGDG fraction (from fully developed tissues) was linolenic acid. However, palmitic acid was the major fatty acid in the DGDG fraction from the young tissues and the SQDG fraction from both tissues. Treatment of needles with aq. SO2 solutions produced marked changes in the concentration and composition of these glycolipid fractions. At 100 ppm, SO2 produced a considerable drop in the linolenic acid content of all glycolipid fractions, more pronounced in the young needles than in the fully developed ones. SO2 also had an effect on the release of soluble sugars from the needle tissues of both ages.  相似文献   

17.
Turions of Utricularia vulgaris L. were germinated in long-day conditions at 15°C for 1,3 and 6 days and their glycolipid composition was compared with that of resting but vernalized turions. Digalactosyldiacylglycerides (DGDG), monogalactosyldiacylglycerides (MGDG) and cerebrosides were present at all stages of development. No great changes were found in the glycolipid classes during sprouting but some differences were noted in the proportions of fatty acids. The most common fatty acids in all three glycolipid classes studied were 16:0, 18:0 and 18:2. MGDG and DGDG also contained relatively much 18:3 and its proportion increased during germination. Young turions and full-grown leaves collected from nature contained the same glycolipid classes as the sprouting turions. The developmental stage of the organs studied is reflected in the fatty acid composition of DGDG and MGDG but is not so evident in the cerebrosides. The 18:2 fatty acid is rather typical of the resting turions, especially in DGDG.  相似文献   

18.
Summary Chromoplast internal membranes from Narcissus pseudonarcissus flowers (like chloroplast envelope membranes, as opposed to chloroplast thylakoids) were found to contain high galactolipid synthesizing activities when UDP-galactose plus diglyceride were applied to the purified preparations.Abbreviations MGDG monogalactosyl diglyceride - DGDG digalactosyl diglyceride  相似文献   

19.
Primary leaves of Phaseolus vulgaris show concomitant changes in phospholipid, galactolipid, chlorophyll and fresh weight during leaf development from 3 to 32 days after planting. Phosphatidyl choline, phosphatidyl ethanolamine, and phosphatidyl inositol show only small changes on a mole per cent lipid phosphate basis during leaf development. The chloroplast lipids, phosphatidyl glycerol, monogalactosyl diglyceride (MGDG) and digalactosyl diglyceride (DGDG) all show marked increases and decreases which are coincident with chloroplast development. The decline in the leaf content of chloroplast polar lipids and chlorophyll become evident upon reaching maximal leaf size. The molar ratio of galactolipids (MGDG/DGDG), reaches a maximum value of 2.3 in expanding leaves, but steadily declines during senescence to a minimum value of 1.5 at abscission. The declining ratio is caused by a preferential loss of MGDG in the senescing leaves.  相似文献   

20.
Although oxylipins can be synthesized from free fatty acids, recent evidence suggests that oxylipins are components of plastid-localized polar complex lipids in Arabidopsis (Arabidopsis thaliana). Using a combination of electrospray ionization (ESI) collisionally induced dissociation time-of-flight mass spectrometry (MS) to identify acyl chains, ESI triple-quadrupole (Q) MS in the precursor mode to identify the nominal masses of complex polar lipids containing each acyl chain, and ESI Q-time-of-flight MS to confirm the identifications of the complex polar lipid species, 17 species of oxylipin-containing phosphatidylglycerols, monogalactosyldiacylglycerols (MGDG), and digalactosyldiacylglycerols (DGDG) were identified. The oxylipins of these polar complex lipid species include oxophytodienoic acid (OPDA), dinor-OPDA (dnOPDA), 18-carbon ketol acids, and 16-carbon ketol acids. Using ESI triple-Q MS in the precursor mode, the accumulation of five OPDA- and/or dnOPDA-containing MGDG and two OPDA-containing DGDG species were monitored as a function of time in mechanically wounded leaves. In unwounded leaves, the levels of these oxylipin-containing complex lipid species were low, between 0.001 and 0.023 nmol/mg dry weight. However, within the first 15 min after wounding, the levels of OPDA-dnOPDA MGDG, OPDA-OPDA MGDG, and OPDA-OPDA DGDG, each containing two oxylipin chains, increased 200- to 1,000-fold. In contrast, levels of OPDA-hexadecatrienoic acid MGDG, linolenic acid (18:3)-dnOPDA MGDG, OPDA-18:3 MGDG, and OPDA-18:3 DGDG, each containing a single oxylipin chain, rose 2- to 9-fold. The rapid accumulation of high levels of galactolipid species containing OPDA-OPDA and OPDA-dnOPDA in wounded leaves is consistent with these lipids being the primary products of plastidic oxylipin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号