首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Osmotic-response element-binding protein (OREBP), also known as TonEBP or NFAT5, is thought to be responsible for the induction of osmolyte-accumulating genes when cells are under hypertonic stress. Recent studies suggest that OREBP also plays a role in water reabsorption in the kidney, T-cell proliferation, and embryonic development. We developed transgenic mice that express the dominant-negative OREBP (OREBPdn) specifically in the lens because our earlier studies showed that it is particularly sensitive to osmotic stress. The transgenic mice developed nuclear cataract soon after birth, suggesting defects in lens development. The developing transgenic lenses showed incomplete elongation of fiber cells and formation of vacuoles. This is accompanied by evidence of DNA strand breaks, activation of p53, and induction of checkpoint kinase, suggesting that the developing fiber cells lacking OREBP are in a similar physiological state as cells experiencing hypertonic stress. These results indicate that OREBP-mediated accumulation of osmolytes is essential during elongation of the lens fiber cells.  相似文献   

6.
OREBP (osmotic response element-binding protein), also called TonEBP or NFAT5, is thought to induce the expression of genes that increase the accumulation of organic osmolytes to protect cells against a hypertonic environment. To investigate the consequences of lacking OREBP activity, transgenic (Tg) mice that overexpress OREBPdn (dominant negative form of OREBP) specifically in the epithelial cells of the renal collecting tubules were generated. These mice showed impairment in their urine concentrating mechanism, most likely due to reduced expression of the aquaporin AQP2 and the urea transporter UT-A1 and UT-A2 mRNAs. When deprived of water or after the administration of a vasopressin analogue, urine osmolality of the Tg mice was significantly increased but not to the same extent as that of the wild type mice. The expression of AQP2 and UT-A1, but not UT-A2 mRNAs, was increased to the same level as that of the wild type mice in the water deprivation state, indicating that the vasopressin regulatory mechanism was not affected by OREBPdn. These data indicate that in addition to vasopressin, OREBP is another essential regulator of the urine concentrating mechanism. Furthermore, the OREBPdn Tg mice developed progressive hydronephrosis soon after weaning, confirming the osmoprotective function of OREBP implicated by the in vitro experiments.  相似文献   

7.
The osmotic response element-binding protein (OREBP), also known as tonicity enhancer-binding protein (TonEBP) or NFAT5, regulates the hypertonicity-induced expression of a battery of genes crucial for the adaptation of mammalian cells to extracellular hypertonic stress. The activity of OREBP/TonEBP is regulated at multiple levels, including nucleocytoplasmic trafficking. OREBP/TonEBP protein can be detected in both the cytoplasm and nucleus under isotonic conditions, although it accumulates exclusively in the nucleus or cytoplasm when subjected to hypertonic or hypotonic challenges, respectively. Using immunocytochemistry and green fluorescent protein fusions, the protein domains that determine its subcellular localization were identified and characterized. We found that OREBP/TonEBP nuclear import is regulated by a nuclear localization signal. However, under isotonic conditions, nuclear export of OREBP/TonEBP is mediated by a CRM1-dependent, leucine-rich canonical nuclear export sequence (NES) located in the N terminus. Disruption of NES by site-directed mutagenesis yielded a mutant OREBP/TonEBP protein that accumulated in the nucleus under isotonic conditions but remained a target for hypotonicity-induced nuclear export. More importantly, a putative auxiliary export domain distal to the NES was identified. Disruption of the auxiliary export domain alone is sufficient to abolish the nuclear export of OREBP/TonEBP induced by hypotonicity. By using bimolecular fluorescence complementation assay, we showed that CRM1 interacts with OREBP/TonEBP, but not with a mutant protein deficient in NES. Our findings provide insight into how nucleocytoplasmic trafficking of OREBP/TonEBP is regulated by changes in extracellular tonicity.  相似文献   

8.
9.
10.
11.
12.
渗透压反应元件结合蛋白(OREBP)是Rel家族的最新成员,是迄今为止唯一已知的哺乳动物细胞渗透压反应调节因子。它最初是作为一种促进渗透压保护基因表达的蛋白在肾髓质细胞中被发现的。最近研究表明,它在胚胎发育、炎症反应、肌生成、HIV复制以及肿瘤细胞的增殖转移等过程中也发挥了十分重要的作用。然而有关高渗环境下OREBP调控机制的认识还很不完整。许多因素参与了OREBP的调控,这些因素都是高渗环境下激活OREBP所必需的,但又都不能独立完成对OREBP的调控。本文对上述因素在高渗环境下OREBP调控中的作用以及它们之间的相互关系进行了综述。  相似文献   

13.
The nucleus pulposus is an aggrecan-rich hydrated tissue that permits the intervertebral disc to resist compressive loads. Adaptation to loading is achieved through an elevation in disc osmolarity mediated by the numerous charged glycosoaminoglycan side chains of the aggrecan molecule. The goal of this investigation was to determine the functional role of the osmo-regulatory protein, TonEBP, in cells of the nucleus pulposus. We found that TonEBP and its downstream target genes were robustly expressed in the tissues of the disc. Above 330 mosmol/kg, cultured nucleus pulposus cells up-regulated target genes TauT, BGT-1, and SMIT; above 450 mosmol/kg, there was raised expression of HSP-70. In hypertonic media there was activation of TauT and heat shock protein-70 (HSP-70) reporter activity and increased binding of TonEBP to the TonE motif. When cells were transfected with the dominant-negative form of TonEBP (DN-TonEBP) there was suppression of TauT and HSP-70 reporter gene expression; pTonEBP enhanced reporter gene expression. Moreover, in hypertonic media, forced expression of DN-TonEBP induced apoptosis. We suppressed TonEBP using small interfering RNA technique and noted a decrease in TauT reporter activity in isotonic as well as hyperosmolar media. Finally, we report that the aggrecan promoter contains two conserved TonE motifs. To evaluate the importance of these motifs, we overexpressed DN-TonEBP and partially silenced TonEBP using small interfering RNA. Both approaches resulted in suppression of aggrecan promoter activity. It is concluded that TonEBP permits the disc cells to adapt to the hyperosmotic milieu while autoregulating the expression of molecules that generate the unique extracellular environment.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号