首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A PNP(p-nitrophenol)-degradingMoraxella sp. was genetically marked bygfp gene for monitoring. Stable chromosomal integration of the introducedgfp gene was confirmed by examining the transformants under epifluorescent microscope. The survival ofgfp-taggedMoraxella sp. cells during long-term storage under starvation condition was examined by viable cell counting and direct fluorescence microscopic counting. The number of green fluorescent cells obtained by direct microscopic counting was approximately 10 times greater than viable cell counts by plating. The number of cells from both counting methods was higher at lower temperature (4°C), although the drop of cell number after 8 weeks of starvation was comparable (approximately 100 fold drop from initial counts). Results obtained by two different methods correlated well with each other indicating that thegfp markedMoraxella sp. can be directly monitored following environmental release using epifluorescence microscopy.  相似文献   

2.
In this study, a gfp-based novel markerless allelic exchange integration system was developed. By employing gfp gene and sacB gene as counter-selectable markers, an ortho-nitrophenol degradation operon (onpABC gene cluster) was successfully inserted into the chromosome of meta-nitrophenol utilizer Cupriavidus necator JMP134. Through two rounds of recombination, the engineered strain (strain JMP134-ONP) was directly selected from the plate by fluorescence screening and has the ability to degrade both ortho-nitrophenol and meta-nitrophenol, simultaneously. This relatively simple and efficient method can be used as an alternative strategy of allelic exchange insertion for the application of metabolic engineering in various bacterial strains, complementary to existing gene knock-in procedures.  相似文献   

3.
A genetic transformation system for the marine pennate diatom, Fistulifera sp. JPCC DA0580, was established using microparticle bombardment methods. Strain JPCC DA0580 has been recently identified as the highest triglyceride (60 % w/w) producer from a culture collection of 1,393 strains of marine microalgae, and it is expected to be a feasible source of biodiesel fuel. The transformation conditions for strain JPCC DA0580 were optimised using the green fluorescent protein gene (gfp) and the gene encoding neomycin phosphotransferase II (nptII). The most efficient rate of transformation was attained when tungsten particles (0.6 μm in diameter) were used for microparticle bombardment. The effect of endogenous and exogenous promoters on the expression of nptII was examined. Endogenous promoters were more efficient for obtaining transformants compared with exogenous promoters. Southern hybridisation analysis suggested that nptII integrated into the nuclear genome. This genetic manipulation technique should allow us to understand the mechanisms of high triglyceride accumulation in this strain, thereby contributing to improving BDF production.  相似文献   

4.
Transformants of Aspergillus flavus containing the Aequorea victoria gfp gene fused to a viral promoter or the promoter region and 483 bp of the coding region of A. flavus aflR expressed green fluorescence detectable without a microscope or filters. Expression of green fluorescent protein fluorescence was correlated with resistance to aflatoxin accumulation in five corn genotypes inoculated with these transformants.  相似文献   

5.
Cao Y  Peng G  He Z  Wang Z  Yin Y  Xia Y 《Biotechnology letters》2007,29(6):907-911
A plasmid, pBGFP, carrying green fluorescent protein (gfp) and benomyl-resistance genes was constructed and transformed into Metarhizium anisopliae. The transformants grew normally and GFP fluorescence was detected. No change was found in virulence for the transformants. Fluorescence was detected in hyphae from the haemolymph of the infected locust, and the benomyl-resistance was maintained. Results suggested that the two markers provided a useful tool for screening and monitoring the engineered strains even after infection.  相似文献   

6.
Two broad-host-range vectors previously constructed for use in soil bacteria (A. G. Matthysse, S. Stretton, C. Dandie, N. C. McClure, and A. E. Goodman, FEMS Microbiol. Lett. 145:87–94, 1996) were assessed by epifluorescence microscopy for use in tagging three marine bacterial species. Expression of gfp could be visualized in Vibrio sp. strain S141 cells at uniform levels of intensity from either the lac or the npt-2 promoter, whereas expression of gfp could be visualized in Psychrobacter sp. strain SW5H cells at various levels of intensity only from the npt-2 promoter. Green fluorescent protein (GFP) fluorescence was not detected in the third species, Pseudoalteromonas sp. strain S91, when the gfp gene was expressed from either promoter. A new mini-Tn10-kan-gfp transposon was constructed to investigate further the possibilities of fluorescence tagging of marine bacteria. Insertion of mini-Tn10-kan-gfp generated random stable mutants at high frequencies with all three marine species. With this transposon, strongly and weakly expressed S91 promoters were isolated. Visualization of GFP by epifluorescence microscopy was markedly reduced when S91 (mini-Tn10-kan-gfp) cells were grown in rich medium compared to that when cells were grown in minimal medium. Mini-Tn10-kan-gfp was used to create an S91 chitinase-negative, GFP-positive mutant. Expression of the chi-gfp fusion was induced in cells exposed to N′-acetylglucosamine or attached to chitin particles. By laser scanning confocal microscopy, biofilms consisting of microcolonies of chi-negative, GFP+ S91 cells were found to be localized several microns from a natural chitin substratum. Tagging bacterial strains with GFP enables visualization of, as well as monitoring of gene expression in, living single cells in situ and in real time.  相似文献   

7.
Tn5 mutagenesis and complementation analysis were used to clone a 6-kb genomic fragment required for biosynthesis of 2,4-diacetylphloroglucinol (Phl) from fluorescent Pseudomonas sp. strain F113. A recombinant plasmid, pCU203, containing this region partially complemented a Phl production-negative mutant (F113G22) derived from strain F113. When sugar beet seeds were sown into an unsterilized soil, in which sugar beet was subject to damping-off by Pythium ultimum, the emergence of sugar beet seeds inoculated with strain F113 was significantly greater than that of seeds inoculated with F113G22. Transfer of pCU203 into eight other Pseudomonas strains conferred the ability to synthesize Phl in only one of these strains, Pseudomonas sp. strain M114. Strain M114(pCU203) showed enhanced antagonism towards P. ultimum in vitro and significantly increased the emergence of sugar beet seeds in the same soil compared with emergence induced by the parent strain M114.  相似文献   

8.
Tn5 mutagenesis and complementation analysis were used to clone a 6-kb genomic fragment required for biosynthesis of 2,4-diacetylphloroglucinol (Phl) from fluorescent Pseudomonas sp. strain F113. A recombinant plasmid, pCU203, containing this region partially complemented a Phl production-negative mutant (F113G22) derived from strain F113. When sugar beet seeds were sown into an unsterilized soil, in which sugar beet was subject to damping-off by Pythium ultimum, the emergence of sugar beet seeds inoculated with strain F113 was significantly greater than that of seeds inoculated with F113G22. Transfer of pCU203 into eight other Pseudomonas strains conferred the ability to synthesize Phl in only one of these strains, Pseudomonas sp. strain M114. Strain M114(pCU203) showed enhanced antagonism towards P. ultimum in vitro and significantly increased the emergence of sugar beet seeds in the same soil compared with emergence induced by the parent strain M114.  相似文献   

9.
Pseudomonas sp. N31 was isolated from soil using 3-nitrophenol and succinate as sole source of nitrogen and carbon respectively. The strain expresses a nitrophenol oxygenase and can use either 2-nitrophenol or 4-chloro-2-nitrophenol as a source of nitrogen, eliminating nitrite, and accumulating catechol and 4-chlorocatechol, respectively. The catechols were not degraded further. Strains which are able to utilize 4-chloro-2-nitrophenol as a sole source of carbon and nitrogen were constructed by transfer of the haloaromatic degrading sequences from either Pseudomonas sp. B13 or Alcaligenes eutrophus JMP134 (pJP4) to strain N31. Transconjugant strains constructed using JMP134 as the donor strain grew on 3-chlorobenzoate but not on 2,4-dichlorophenoxyacetate. This was due to the non-induction of 2,4-dichlorophenoxyacetate monooxygenase and 2,4-dichlorophenol hydroxylase. Transfer of the plasmid from the 2,4-dichlorophenoxyacetate negative transconjugant strains to a cured strain of JMP134 resulted in strains which also had the same phenotype. This indicates that a mutation has occurred in pJP4 to prevent the expression of 2,4-dichlorophenoxyacetate monooxygenase and 2,4-dichlorophenol hydroxylase.  相似文献   

10.
Pseudomonas chlororaphis MA 342 is a potent biocontrol agent that can be used against several seed-borne diseases of cereal crops, including net blotch of barley caused by the fungus Drechslera teres. In this study, strain MA 342 was tagged with the gfp gene (encoding the green fluorescent protein) in order to study the fate of cells after seed inoculation. The gfp-tagged strain, MA 342G2, had the same biocontrol efficacy as the wild type when it was applied at high cell concentrations to seeds but was less effective at lower cell concentrations. By comparing cell counts determined by microscopy to the number of CFU, we found that the number of culturable cells was significantly lower than the total number of bacteria on seeds which were inoculated and dried for 20 h. Confocal microscopy and epifluorescence stereomicroscopy were used to determine the pattern of MA 342G2 colonization and cell aggregation on barley seeds. Immediately after inoculation of seeds, bacteria were found mainly under the seed glume, and there was no particular aggregation pattern. However, after the seeds were sown, irregularly distributed areas of bacterial aggregation were found, which reflected epiphytic colonization of glume cells. There was a trend towards bacterial aggregation near the embryo but never within the embryo. Bacterial aggregates were regularly found in the groove of each seed formed by the base of the coleoptile and the scutellum. Based on these results, we suggest that MA 342 colocalizes with the pathogen D. teres, which facilitates the action of the fungistatic compound(s) produced by this strain.  相似文献   

11.
利用从香菇菌丝体中克隆的启动子片段gpd-Le(613bp)和ras-Le(715bp)分别连接于报告基因gfp(绿色荧光蛋白基因)的上游,构建了启动子功能活性检测表达质粒pLg-gfp和pLr-gfp。采用PEG介导法把表达质粒pLg-gfp和pLr-gfp分别与辅助质粒pCc1001(含有trp1基因)共转化进色氨酸营养缺陷型的灰盖鬼伞粉孢子的原生质体中。经过选择培养基筛选、假定转化子的分子鉴定以及GFP荧光检测。结果表明:香菇gpd-Le启动子在灰盖鬼伞的菌丝中具有较强驱动外源gfp基因表达的活性,在荧光显微镜和共聚焦显微镜下观察到gfp基因表达的绿色荧光。而香菇ras-Le启动子没有检测到有驱动外源gfp基因表达的活性。  相似文献   

12.
利用从香菇菌丝体中克隆的启动子片段gpd-Le(613bp)和ras-Le(715bp)分别连接于报告基因gfp(绿色荧光蛋白基因)的上游,构建了启动子功能活性检测表达质粒pLg-gfp和pLr-gfp。采用PEG介导法把表达质粒pLg-gfp和pLr-gfp分别与辅助质粒pCc1001(含有trp1基因)共转化进色氨酸营养缺陷型的灰盖鬼伞粉孢子的原生质体中。经过选择培养基筛选、假定转化子的分子鉴定以及GFP荧光检测。结果表明:香菇gpd-Le启动子在灰盖鬼伞的菌丝中具有较强驱动外源gfp基因表达的活性,在荧光显微镜和共聚焦显微镜下观察到gfp基因表达的绿色荧光。而香菇ras-Le启动子没有检测到有驱动外源gfp基因表达的活性。  相似文献   

13.
Nitrogen-fixing bacteria were isolated from the stems of wild and cultivated rice on a modified Rennie medium. Based on 16S ribosomal DNA (rDNA) sequences, the diazotrophic isolates were phylogenetically close to four genera: Herbaspirillum, Ideonella, Enterobacter, and Azospirillum. Phenotypic properties and signature sequences of 16S rDNA indicated that three isolates (B65, B501, and B512) belong to the Herbaspirillum genus. To examine whether Herbaspirillum sp. strain B501 isolated from wild rice, Oryza officinalis, endophytically colonizes rice plants, the gfp gene encoding green fluorescent protein (GFP) was introduced into the bacteria. Observations by fluorescence stereomicroscopy showed that the GFP-tagged bacteria colonized shoots and seeds of aseptically grown seedlings of the original wild rice after inoculation of the seeds. Conversely, for cultivated rice Oryza sativa, no GFP fluorescence was observed for shoots and only weak signals were observed for seeds. Observations by fluorescence and electron microscopy revealed that Herbaspirillum sp. strain B501 colonized mainly intercellular spaces in the leaves of wild rice. Colony counts of surface-sterilized rice seedlings inoculated with the GFP-tagged bacteria indicated significantly more bacterial populations inside the original wild rice than in cultivated rice varieties. Moreover, after bacterial inoculation, in planta nitrogen fixation in young seedlings of wild rice, O. officinalis, was detected by the acetylene reduction and 15N2 gas incorporation assays. Therefore, we conclude that Herbaspirillum sp. strain B501 is a diazotrophic endophyte compatible with wild rice, particularly O. officinalis.  相似文献   

14.
Guignardia citricarpa is the causal agent of Citrus Black Spot (CBS), an important disease in Citriculture. Due to the expressive value of this activity worldwide, especially in Brazil, understanding more about the functioning of this fungus is of utmost relevance, making possible the elucidation of its infection mechanisms, and providing tools to control CBS. This work describes for the first time an efficient and successful methodology for genetic transformation of G. citricarpa mycelia, which generated transformants expressing the gene encoding for the gfp (green fluorescent protein) and also their interaction with citrus plant. Mycelia of G. citricarpa were transformed via Agrobacterium tumefaciens, which carried the plasmid pFAT-gfp, contains the genes for hygromycin resistance (hph) as well as gfp. The optimization of the agrotransformation protocol was performed testing different conditions (type of membrane; inductor agent concentration [acetosyringone – AS] and cocultivation time). Results demonstrated that the best condition occurred with the utilization of cellulose's ester membrane; 200 μM of AS and 96 h as cocultivation time. High mitotic stability (82 %) was displayed by transformants using Polymerase Chain Reaction (PCR) technique to confirm the hph gene insertion. In addition, the presence of gfp was observed inside mycelia by epifluorescence optical microscopy. This technique easy visualization of the behaviour of the pathogen interacting with the plant for the first time, allowing future studies on the pathogenesis of this fungus. The establishment of a transformation method for G. citricarpa opens a range of possibilities and facilitates the study of insertional mutagenesis and genetic knockouts, in order to identify the most important genes involved in the pathogenesis mechanisms and plant–pathogen interaction.  相似文献   

15.
Pseudomonas sp. strain WBC-3 utilizes methyl parathion (MP) and para-nitrophenol as the sole source of carbon, nitrogen and energy. In this study, strain WBC-3 was inoculated into lab-scale MP-contaminated soil for bioaugmentation. Accelerated removal of MP was achieved in bioaugmentation treatment compared to non-bioaugmentation treatment, with complete removal of 0.536 mg g−1 dry soil in bioaugmentation treatment within 15 days and without accumulation of toxic intermediates. The analysis of denaturing gradient gel electrophoresis and real-time PCR showed that strain WBC-3 existed stably during the entire bioaugmentation period. Simultaneously, redundancy analysis for evaluating the relationships between the environmental factors and microbial community structure indicated that the indigenous bacterial community structure was significantly influenced by strain WBC-3 inoculation (P = 0.002).  相似文献   

16.
Ralstonia eutropha H850 was labelled chromosomally with a gfp marker gene encoding for the green fluorescent protein, and designated R. eutropha H850g13. Visual observation of green fluorescent cells under an epifluorescence microscope, and PCR amplification products, confirmed that the bacterium was labelled with gfp. Southern blot hybridization products further confirmed the gfp was chromosomally labelled. Using resting cell assays, it was determined that insertion of the gfp gene decreased the microorganisms' ability to degrade biphenyl compared to the parent strain. However, this marker facilitated the identification and monitoring of R. eutropha H850g13 survival in soil microcosm experiments. Survival and polychlorinated biphenyl degradation by R. eutropha H850g13 was analysed in soil microcosms spiked with 2,2,5,5-tetrachlorobiphenyl (TeCB). R. eutropha H850g13 was detected by viable plate counts and most-probable-number/PCR after 102 days in TeCB-contaminated soil microcosms, and was likely outcompeted by indigenous soil microorganisms in microcosms amended with oil and Daramend (an organic amendment, ). R. eutropha H850g13 did not degrade TeCB in any of the soil microcosms. This research confirmed that gfp was useful as a marker to distinguish R. eutropha H850g13 from indigenous soil microorganisms over a 102 day period and that, under the experimental conditions used, R. eutropha H850g13 did not degrade TeCB.  相似文献   

17.
Surface display of the active proteins on living cells has enormous potential in the degradation of numerous toxic compounds. Here, we report the codisplay of organophosphorus hydrolase (OPH) and enhanced green fluorescent protein (GFP) on the cell surface of Escherichia coli by use of the truncated ice nucleation protein (INPNC) and Lpp-OmpA fusion systems. The surface localization of both INPNC-OPH and Lpp-OmpA-GFP was demonstrated by Western blot analysis, immunofluorescence microscopy, and a protease accessibility experiment. Anchorage of GFP and OPH on the outer membrane neither inhibits cell growth nor affects cell viability, as shown by growth kinetics of cells and stability of resting cultures. The engineered E. coli can be applied in the form of a whole-cell biocatalyst and can be tracked by fluorescence during bioremediation. This strategy of codisplay should open a new dimension for the display of multiple functional moieties on the surface of a bacterial cell. Furthermore, a coculture comprised of the engineered E. coli and a natural p-nitrophenol (PNP) degrader, Ochrobactrum sp. strain LL-1, was assembled for complete mineralization of organophosphates (OPs) with a PNP substitution. The coculture degraded OPs as well as PNP rapidly. Therefore, the coculture with autofluorescent and mineralizing activities can potentially be applied for bioremediation of OP-contaminated sites.  相似文献   

18.
A degradative bacterium, M6, was isolated and presumptively identified as Plesiomonas sp. strain M6 was able to hydrolyze methyl parathion to p-nitrophenol. A novel organophosphate hydrolase gene designated mpd was selected from its genomic library prepared by shotgun cloning. The nucleotide sequence of the mpd gene was determined. The gene could be effectively expressed in Esherichia coli.  相似文献   

19.
Currently, chlorpyrifos (CP) and carbofuran are often applied together to control major agricultural pests in many developing countries, in most cases, they are simultaneously detected in agricultural soils. Some cost‐effective techniques are required for the remediation of combined pollution caused by multiple pesticides. In this work, we aim at constructing a detectable recombinant microorganism with the capacity to simultaneously degrade CP and carbofuran. To achieve this purpose, CP/carbofuran hydrolase genes and gfp were integrated into the chromosome of a biosafety strain Pseudomonas putida KT2440 using a chromosomal scarless modification strategy with upp as a counter‐selectable marker. The toxicity of the hydrolysis products was significantly lower compared with the parent compounds. The recombinant strain could utilize CP or carbofuran as the sole source of carbon for growth. The inoculation of the recombinant strain to soils treated with carbofuran and CP resulted in a higher degradation rate than in noninoculated soils. Introduced green fluorescent protein can be employed as a biomarker to track the recombinant strain during bioremediation. Therefore, the recombinant strain has potential to be applied for in situ bioremediation of soil co‐contaminated with carbofuran and CP.  相似文献   

20.
This study aims to investigate the colonization of poplar by the endophyte Pseudomonas putida W619 and its capacity to promote plant growth. Poplar cuttings were inoculated with P. putida W619 (wild-type or gfp-labelled). The colonization of both strains was investigated and morphological, physiological and biochemical parameters were analyzed to evaluate plant growth promotion. Inoculation with P. putida W619 (wild-type) resulted in remarkable growth promotion, decreased activities of antioxidative defence related enzymes, and reduced stomatal resistance, all indicative of improved plant health and growth in comparison with the non-inoculated cuttings. In contrast, inoculation with gfp-labelled P. putida W619 did not promote growth; it even had a negative effect on plant health and growth. Furthermore, compared to the wildtype strain, colonization by the gfp-labelled P. putida W619::gfp1 was much lower; it only colonized the rhizosphere and root cortex while the wild-type strain also colonized the root xylem vessels. Despite the strong plant growth promoting capacity of P. putida W619 (wild-type), after gfp labelling its growth promoting characteristics disappeared and its colonization capacity was strongly influenced; for these reasons gfp labelling should be applied with sufficient caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号