首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pattern of synthesis of the spore coat proteins during development of Dictyostelium discoideum has been determined by using immunoprecipitation with spore protein antibody. SP170, SP103, 'SP94', SP82, SP76 and SP55 are all first synthesized just prior to the 'Mexican hat' stage of development (16-18h), but the synthesis of SP72 is delayed. This protein is apparently synthesized as a precursor, P66, which is modified during spore maturation to yield SP72. The nature of the modification is unknown. At their peak period of synthesis during early culmination (18-20h), the spore coat proteins account for 5-9% of total protein synthesis. Shortly after synthesis, these proteins are inserted into the spore coat, where all except SP103 become disulphide-cross-linked during the period 24-30h. SP3 does not accumulate until disulphide-cross-linking of the major spore coat proteins occurs and is itself disulphide-cross-linked into the spore coat. Several additional proteins that are accumulated during development have also been identified, namely P31, P25, P21 and P18. P25 first appears at 18-20h and then continues to be made throughout development. P31 synthesis begins at 12-14h and then largely ceases after approx. 20 h of development. The genes for both P21 and P18 are first expressed early in development, starting at 9-12h. P21 synthesis ceases at approx. 14h, but P18 continues to be synthesized throughout the rest of development. The marked differences in the time period of accumulation of these proteins compared with the co-ordinated syntheses of SP170, SP103, 'SP94', SP82, SP76 and SP55 provide a useful system for analysis of the mechanism of temporal gene expression during development.  相似文献   

2.
Immunological evidence is presented which confirms that pp95, one of the major phosphoproteins accumulated in development of the cellular slime mould Dictyostelium discoideum, is identical with spore coat protein SP13. The site of phosphorylation is identified as phosphoserine. The second major phosphorylated component, pp74, corresponds to two co-migrating spore coat proteins known collectively as SP74.  相似文献   

3.
The spore coat of a fucosylation mutant in Dictyostelium discoideum   总被引:1,自引:0,他引:1  
Strain HL250 of Dictyostelium discoideum cannot convert GDP-mannose to GDP-fucose, resulting in an inability to fucosylate protein. This affects a group of proteins which are normally fucosylated intracellularly and then secreted via prespore vesicles to become part of the outer lamina of the spore coat. We have found that strain HL250 nevertheless accumulates typical amounts of these proteins, stores them normally in prespore vesicles, and secretes them normally to become a part of the spore coat. However, affected proteins are proteolyzed after germination, the spore coat is more accessible to penetration by a macromolecular probe, and germination is inefficient in older spores. These findings can be explained by a dependence of the integrity of the outer layer of the spore coat on protein-linked fucose.  相似文献   

4.
SG mutant and aged wild type spores of the cellular slime mold Dictyostelium discoideum germinate in the absence of an externally applied activation treatment. This type of germination is referred to as autoactivation. During the swelling stage of autoactivation, spores release a factor, the autoactivator, capable of stimulating germination in subsequent spore populations. The autoactivator was not present in the dormant spore, but it or a precursor was produced internally during the first hour of autoactivation. This production was sensitive to moderately high temperatures (+31° C) and was completely destroyed by heat activation (45° C for 30 min). Internal production of the autoactivator was not sensitive to protein synthesis inhibitors. However, the release of the activator from the spore appeared to be regulated by protein synthesis. Internal autoactivator was also produced in the aged wild type strain during the postautoactivation lag phase. The activator could not be directly isolated from within the germinating spore. Its activity on the rest of the spore population was dependent upon its release from the germinating spore. A model is presented integrating the effects of heat, cycloheximide, autoinhibitor and autoactivator on spores of D. discoideum.  相似文献   

5.
Haploid spores usually lead to the production of small plaques when plated under standard conditions; diploid spores usually lead to the formation of large plaques.  相似文献   

6.
During Dictyostelium discoideum spore germination, degradation of the cellulose-containing spore wall is required to allow the amoeba to emerge. The CelA gene, which is transcribed and expressed exclusively during spore germination, codes for a 705-amino-acid protein that has cellulase activity [endo-(1,4)-beta-D-glucanase]. Amoebae transformed by a vector containing the CelA coding sequence or portions of it transcribed from a heterologous promoter expressed and secreted full-length or suitably truncated proteins during vegetative growth when, under normal conditions, these proteins are not made. The gene constructs divided the CelA protein into three domains: a 461-amino-acid N-terminal region that has significant similarity to those of other cellulases and that has been shown to be the catalytic domain; a contiguous 91-residue repeat containing the motif threonine-glutamic acid-threonine-proline, which is glycosylated; and, joined to the repeat, a C-terminal 153-amino-acid sequence that most probably defines a cellulose-binding domain.  相似文献   

7.
While certain sporagenous mutants of Dictyostelium discoideum do not display a density dependence for spore cell formation under in vitro differentiating conditions, other sporagenous mutants (HM18, HM18-2 and FR17) do exhibit density dependence. In addition, pre-spore cell formation in the wild-type strain V12M2 is density-dependent. Spore cell formation in HM18 and HM18-2 is stimulated at low cell densities by a membrane fraction from pseudoplasmodial cells. Stimulation is also effected by extracts of these membranes or conditioned media from starving cells and these preparations also stimulate pre-spore cell formation in V12M2. The active factor in conditioned media is of low molecular weight, heat-stable and insensitive to treatment by pronase and glycosidase; the factor is not extractable by hexane. The available evidence suggests that the active factor in conditioned media and in membrane extracts is the same molecule and, although ammonia also stimulates spore cell formation under these conditions, the active factor is not ammonia. More activity is produced extracellularly by cells in shake suspension than by cells in monolayers, and some strains produce more activity than others.  相似文献   

8.
Spores may be reversibly activated by the application of heat, dimethyl sulfoxide, urea, or ethylene glucol. Severe changes in four environmental variables (high osmotic pressure, low oxygen tension, low or high pH, and low or high temperature) interfere with the germination process. Spores at the end of the postactivation lag phase of germination were usually deactivated if exposed to severe environmental conditions and thus did not swell; spores in the swelling and oxygen uptake which began during spore activation was primarily attributable to a cyanide-sensitive pathway and secondarily to a salicylhydroxamic acid (SHAM) sensitive pathway. Inhibition of the SHAM-sensitive pathway did not cause spore deactivation while the addition of cyanide resulted in rapid spore deactivation. Treatment of activated spores with azide or environmental shifts also resulted in inhibition of oxygen uptake and spore deactivation. Deactivating spores did not demonstrate the amino acid incorporation, uridine incorporation, and expression of trehalase activity which is found in the later stages of germinating control spores. Protein synthesis inhibitors did not cause spore deactivation or a decrease in oxygen uptake but they inhibited amino acid incorporation and the expression trehalase activity in swollen spores. It is concluded that control of respiratory activity is involved in regulation of reversible activation.  相似文献   

9.
When deprived of exogenous nutrients some amoebas of Dictyostelium discoideum do continue to progress through the cell cycle. There are two distinct periods when mitotic cell division occurs. Labeling studies show that during the first period, which begins at the onset of development and ceases at the first visible signs of aggregation (rippling), only those cells which are beyond a certain point in G2 at the initiation of development divide. The second period of mitotic activity begins at tip formation, reaches maximum activity at the grex stage, and ceases during early culmination. Significantly, examination of the development of amoebas harvested when in the stationary phase of growth (and thus arrested in G2) shows that these cells still undergo mitotic cell division during the second period but do not show any such division during the preaggregation phase. The extent to which increases in cell number can be taken to be indicative of mitotic cell division varies from one culture to another due to the presence of variable numbers of multinucleate cells which become mononucleate during the first 10 hr of development. However, when due allowance has been made for the existence of these cells in axenically growing amoebal populations, our data show that by completion of fruiting body construction there has been a doubling in cell number as a direct result of mitotic cell division. Nuclear DNA synthesis also occurs at two distinct periods during development, these coinciding with the periods of mitotic activity. However, since no more than 35% of the cells have undergone nuclear DNA synthesis by the end of the developmental phase, our results are inconsistent with the conclusion that all cells accumulate at a position in G2 at the time of aggregation. Our results do suggest, however, that mitotic cell division of a fraction of the cells may be an integral part of the developmental phase.  相似文献   

10.
11.
12.
13.
14.
Dictyostelium discoideum, a unicellular organism capable of developing into a multicellular structure, is a powerful model system to study a variety of biological processes. Because it is inexpensive and relatively easy to grow, Dictyostelium is also frequently used in teaching laboratories. Here we describe conditions for successfully growing and developing Dictyostelium cells and methods for long-term storage of Dictyostelium amoebae and spores.  相似文献   

15.
In order to better understand the molecular mechanisms of cellular differentiation in Dictyostelium discoideum, we have identified the minimum regulatory sequences of the prespore-specific gene SP60/cotC that are sufficient to confer cell-type-specific expression on a heterologous promoter. This region includes at least two essential cis-acting elements: a novel AT-rich element (or elements) and CAE3. The essential function of the AT element is confirmed through point mutations that decrease expression below the level of detection. CAE3 is one of three CA-rich elements (CAEs) required for the induction of SP60/cotC during development or in response to extracellular cyclic AMP. The CAEs have differential affinities for a specific developmentally induced nuclear activity (CAE1 > CAE2 >> CAE3). Here, we identify this activity as G-box-binding factor (GBF) and show that in vitro-transcribed and -translated GBF binds all three SP60/cotC CAEs in a sequence-specific manner. Previous studies have suggested that GBF mediates the induction of some prestalk genes, and these results demonstrate that it also has a specific role in prespore gene activation.  相似文献   

16.
A variety of extracellular signals lead to the accumulation of cAMP which can act as a second message within cells by activating protein kinase A (PKA). Expression of many of the essential developmental genes in Dictyostelium discoideum are known to depend on PKA activity. Cells in which the receptor-coupled adenylyl cyclase gene, acaA, is genetically inactivated grow well but are unable to develop. Surprisingly, acaA(-) mutant cells can be rescued by developing them in mixtures with wild-type cells, suggesting that another adenylyl cyclase is present in developing cells that can provide the internal cAMP necessary to activate PKA. However, the only other known adenylyl cyclase gene in Dictyostelium, acgA, is only expressed during germination of spores and plays no role in the formation of fruiting bodies. By screening morphological mutants generated by Restriction Enzyme Mediated Integration (REMI) we discovered a novel adenylyl cyclase gene, acrA, that is expressed at low levels in growing cells and at more than 25-fold higher levels during development. Growth and development up to the slug stage are unaffected in acrA(-) mutant strains but the cells make almost no viable spores and produce unnaturally long stalks. Adenylyl cyclase activity increases during aggregation, plateaus during the slug stage and then increases considerably during terminal differentiation. The increase in activity following aggregation fails to occur in acrA(-) cells. As long as ACA is fully active, ACR is not required until culmination but then plays a critical role in sporulation and construction of the stalk.  相似文献   

17.
Abstract RasG protein levels in dormant and germinating spores of Dictyostelium discoideum strains JC1 and SG1 were estimated by Western blotting. Ras Glevels were very low in dormant spores and remained low during the lag period, regardless of whether spores were heat activated or treated with autoactivator during the early stages of spore germination. RasG levels increased late during spore swelling just prior to the emergence stage of germination. These data are consistent with a requirement for RasG during vegetative growth.  相似文献   

18.
19.
dutA is a gene specifically expressed during the development of Dictyostelium discoideum. Toward understanding its possible role in development, we isolated and characterized the gene and its complete cDNA. We found that dutA is encoded by the nuclear genome as a single copy gene without introns. In addition, the following unique and interesting features of dutA RNA (1322 nt) emerged: (1) it has no sustained ORFs (MAX = 126 nt) (2) it is extremely AU-rich (83%) (3) it contains peculiar sequence motifs (large palindromes, long AU-stretches and GC-clusters) (4) it is localized in the cytoplasm but completely absent from ribosomes. These features suggest that dutA RNA functions without being translated into protein. Disruption of the dutA gene did not cause phenotypic changes, suggesting that the function of dutA is redundant.  相似文献   

20.
The pattern of membranal phosphoproteins in Dictyostelium discoideum changes during development (D. S. Coffman, B. H. Leichtling, and H. V. Rickenberg, 1981, J. Supramol. Struct. Cell. Biochem. 15, 369–385). Phosphorylation of six membranal proteins occurred concomitantly with their synthesis. Cyclic AMP stimulated the precocious synthesis of a phosphoprotein, of molecular weight 80,000, which corresponds to contact sites A. Phosphoserine was the only phosphorylated amino acid found in the five phosphoproteins examined. In at least two phosphoproteins, that corresponding to contact sites A and a phosphoprotein of molecular weight 64,000, the phosphate moiety did not turn over.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号