首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although T-type Ca(2+) channels are implicated in nociception, the function of specific subtypes has not been well defined. Here, we compared pain susceptibility in mice lacking Ca(V)3.2 subtype of T-type Ca(2+) channels (Ca(V)3.2(-/-)) with wild-type littermates in various behavioral models of pain to explore the roles of Ca(V)3.2 in the processing of noxious stimuli in vivo. In acute mechanical, thermal and chemical pain tests, Ca(V)3.2(-/-) mice showed decreased pain responses compared to wild-type mice. Ca(V)3.2(-/-) mice also displayed attenuated pain responses to tonic noxious stimuli such as intraperitoneal injections of irritant agents and intradermal injections of formalin. In spinal nerve ligation-induced neuropathic pain, however, behavioral responses of Ca(V)3.2(-/-) mice were not different from those of wild-type mice. The present study reveals that the Ca(V)3.2 subtype of T-type Ca(2+) channels are important in the peripheral processing of noxious signals, regardless of modality, duration or affected tissue type.  相似文献   

3.
We review previously published data, and present some new data, indicating that spinal application of neuropeptide Y (NPY) reduces behavioral and neurophysiological signs of acute and chronic pain. In models of acute pain, early behavioral studies showed that spinal (intrathecal) administration of NPY and Y2 receptor agonists decrease thermal nociception. Subsequent neurophysiological studies indicated that Y2-mediated inhibition of excitatory neurotransmitter release from primary afferent terminals in the substantia gelatinosa may contribute to the antinociceptive actions of NPY. As with acute pain, NPY reduced behavioral signs of inflammatory pain such as mechanical allodynia and thermal hyperalgesia; however, receptor antagonist studies indicate an important contribution of spinal Y1 rather than Y2 receptors. Interestingly, Y1 agonists suppress inhibitory synaptic events in dorsal horn neurons (indeed, well known mu-opioid analgesic drugs produce similar cellular actions). To resolve the behavioral and neurophysiological data, we propose that NPY/Y1 inhibits the spinal release of inhibitory neurotransmitters (GABA and glycine) onto inhibitory neurons, e.g. disinhibition of pain inhibition, resulting in hyporeflexia. The above mechanisms of Y1- and Y2-mediated analgesia may also operate in the setting of peripheral nerve injury, and new data indicate that NPY dose-dependently inhibits behavioral signs of neuropathic pain. Indeed, neurophysiological studies indicate that Y2-mediated inhibition of Ca(2+) channel currents in dorsal root ganglion neurons is actually increased after axotomy. We conclude that spinal delivery of Y1 agonists may be of use in the treatment of chronic inflammatory pain, and that the use of Y1 and Y2 agonists in neuropathic pain warrants further consideration.  相似文献   

4.
Neuropathic pain caused by somatosensory nervous system dysfunction is a serious public health problem. Some long noncoding RNAs (lncRNAs) can participate in physiological processes involved in neuropathic pain. However, the effects of lncRNA DGCR5 in neuropathic pain have not been explored. Therefore, in our current study, we concentrated on the biological roles of DGCR5 in neuropathic pain. Here, it was observed that DGCR5 was significantly decreased in chronic sciatic nerve injury (CCI) rat models. DGCR5 overexpression was able to alleviate neuropathic pain development including mechanical and thermal hyperalgesia. In addition, the current understanding of miR-330-3p function in neuropathic pain remains largely incomplete. Here, we found that miR-330-3p was greatly increased in CCI rats and DGCR5 can modulate miR-330-3p expression negatively. Upregulation of DGCR5 repressed inflammation-correlated biomarkers including interleukin 6 (IL-6), tumor necrosis factor α, and IL-1β in CCI rats by sponging miR-330-3p. The negative correlation between DGCR5 and miR-330-3p was confirmed in our current study. Inhibition of miR-330-3p suppressed neuropathic pain progression by restraining neuroinflammation in vivo. In addition, PDCD4 was predicted as a downstream target of miR-330-3p. Furthermore, PDCD4 was significantly increased in CCI rats and DGCR5 regulated PDCD4 expression through sponging miR-330-3p in CCI rat models. Taken these together, it was implied that DGCR5/miR-330-3p/PDCD4 axis participated in neuropathic pain treatment.  相似文献   

5.
Lee TH  Wang CJ  Wu PC  Buerkle H  Lin SH  Yang LC 《Life sciences》2002,70(25):3039-3047
Intrathecal (IT) lamotrigine, a sodium channel blocker which suppresses neuronal release of glutamate, has been shown to produce a long-lasting antihyperalgesic effect in the neuropathic pain models. In the present study, we examined the anti-hyperalgesic effects of pre- versus post-treatment of IT lamotrigine in an animal inflammatory pain model, the inflamed knee joint model of the rat. Thermal and mechanical antinociception was assessed in rats using a modified Hargreaves box and von Frey hairs. Induction of tonic persistent inflammatory pain was induced by intra-articular injection (i.a.) of a carrageenan-kaolin mixture (CK) into the right knee-joint. Rats were randomly assigned to the groups receiving IT lamotrigine in distinct doses of 5, 50 or 100 ug either pre- (10 min before CK injection) or post-inflammation induction (4 h or 23 h). We observed that CK injection resulted in a significant thermal and mechanical hyperalgesia throughout a 24-h observation period. Pre-treatment with IT lamotrigine revealed a time and dose-dependent suppression of thermal and mechanical hyperalgesia, whereas the post-treatment with IT lamotrigine only showed an effect for mechanical nociception. CONCLUSION: IT Lamotrigine is antihyperalgesic at a dose larger than 50 ug in the early phase of inflammatory pain model. It reverses tactile allodynia but not thermal hyperalgesia when given after the inflammation induction.  相似文献   

6.
Neuropathic pain is a kind of chronic pain because of dysfunctions of somatosensory nerve system. Recently, many studies have demonstrated that microRNAs (miRs) play crucial roles in neuropathic pain development. This study was designed to investigate the effects of miR-134-5p on the process of neuropathic pain progression in a rat model established by chronic sciatic nerve injury (CCI). First, we observed that miR-134-5p was significantly decreased in CCI rat models. Overexpression of miR-134-5p strongly alleviated neuropathic pain behaviors including mechanical and thermal hyperalgesia. Meanwhile, inflammatory cytokine expression, such as IL-6, IL-1β and TNF-α in CCI rats were greatly repressed by upregulation of miR-134-5p. Twist1 has been widely regarded as a poor prognosis biomarker in diverse diseases. Here, by using bioinformatic analysis, 3′-untranslated region (UTR) of Twist1 was predicted to be a downstream target of miR-134-5p in our study. Here, we found that overexpression of miR-134-5p was able to suppress Twist1 dramatically. Furthermore, it was exhibited that Twist1 was increased in CCI rats time-dependently and Twist1 was inhibited in vivo. Subsequently, downregulation of Twist1 in CCI rats could depress neuropathic pain progression via inhibiting neuroinflammation. In conclusion, our current study indicated that miR-134-5p may inhibit neuropathic pain development through targeting Twist1. Our findings suggested that miR-134-5p might provide a novel therapeutic target for neuropathic pain.  相似文献   

7.
Hypotaurine is an intermediate in taurine biosynthesis from cysteine in astrocytes. Although hypotaurine functions as an antioxidant and organic osmolyte, its physiological role in the central nervous system remains unclear. This study used behavioral assessments to determine whether hypotaurine influenced nociceptive transmission in acute, inflammatory, and neuropathic pain. The tail flick, paw pressure, and formalin tests were performed in male Sprague-Dawley rats to examine the effects of the intrathecal administration of hypotaurine (100, 200, 400, 600?μg) on thermal, mechanical, and chemical nociception. Chronic constriction injury (CCI) to the sciatic nerve was induced in the rats, and the electronic von Frey test and plantar test were performed to assess the effects on neuropathic pain. To determine which neurotransmitter pathway(s) was involved in the action of hypotaurine, in this study, we examined how the antagonists of spinal pain processing receptors altered the effect of 600?μg hypotaurine. To explore whether hypotaurine affected motor performance, the Rotarod test was conducted. Hypotaurine had antinociceptive effects on thermal, mechanical, and chemical nociception in the spinal cord. In CCI rats, hypotaurine alleviated mechanical allodynia and thermal hyperalgesia. These effects were reversed completely by pretreatment with an intrathecal injection of strychnine, a glycine receptor antagonist. Conversely, hypotaurine did not affect motor performance. This study demonstrated that intrathecal hypotaurine suppressed acute, inflammatory, and neuropathic pain. Hypotaurine may regulate nociceptive transmission physiologically by activating glycinergic neurons in the spinal cord, and it is a promising candidate for treating various pain states.  相似文献   

8.
Wei F  Qiu CS  Kim SJ  Muglia L  Maas JW  Pineda VV  Xu HM  Chen ZF  Storm DR  Muglia LJ  Zhuo M 《Neuron》2002,36(4):713-726
Adenylyl cyclase types 1 (AC1) and 8 (AC8), the two major calmodulin-stimulated adenylyl cyclases in the brain, couple NMDA receptor activation to cAMP signaling pathways. Cyclic AMP signaling pathways are important for many brain functions, such as learning and memory, drug addiction, and development. Here we show that wild-type, AC1, AC8, or AC1&8 double knockout (DKO) mice were indistinguishable in tests of acute pain, whereas behavioral responses to peripheral injection of two inflammatory stimuli, formalin and complete Freund's adjuvant, were reduced or abolished in AC1&8 DKO mice. AC1 and AC8 are highly expressed in the anterior cingulate cortex (ACC), and contribute to inflammation-induced activation of CREB. Intra-ACC administration of forskolin rescued behavioral allodynia defective in the AC1&8 DKO mice. Our studies suggest that AC1 and AC8 in the ACC selectively contribute to behavioral allodynia.  相似文献   

9.
Lysophosphatidic acid (LPA) is a bioactive lipid acting on the nervous system through at least 6 different G protein‐coupled receptors. In this study, we examined mice lacking the LPA5 receptor using an extensive battery of behavioral tests. LPA5‐deficient mice showed decreased pain sensitivity in tail withdrawal, faster recovery in one inflammatory pain procedure (complete Freund's adjuvant‐induced inflammation) and attenuated responses under specific neuropathic pain conditions. Notably, deletion of LPA5 also induced nocturnal hyperactivity and reduced anxiety in the mutant mice. Several exploratory tasks revealed signs of reduced anxiety in LPA5 knockout mice including increased visits to the arena center and reduced thigmotaxis in the open field, and more open arm entries in the elevated plus maze. Finally, LPA5 knockout mice also displayed marked reduction in social exploration, although several other tests indicated that these mice were able to respond normally to environmental stimuli. While learning and memory performance was not impaired in LPA5‐deficient mice, we found differences, e.g., targeted swim strategy and reversal learning, as well as scheduled appetitive conditioning that might indicate differential motivational behavior. These results imply that LPA5 might be involved in both nociception and mechanisms of pain hypersensitivity, as well as in anxiety‐related and motivational behaviors. These observations further support the proposed involvement of LPA signaling in psychopathology.  相似文献   

10.
A growing body of evidence indicates that P2X receptors (P2XRs), a family of ligand-gated cation channels activated by extracellular ATP, play an important role in pain signaling. In contrast to the role of the P2X3R subtype that has been extensively studied, the precise roles of others among the seven P2XR subtypes (P2X1R-P2X7R) remain to be determined because of a lack of sufficiently powerful tools to specifically block P2XR signaling in vivo. In the present study, we investigated the behavioral phenotypes of a line of mice in which the p2rx4 gene was disrupted in a series of acute and chronic pain assays. While p2rx4 -/- mice showed no major defects in pain responses evoked by acute noxious stimuli and local tissue damage or in motor function as compared with wild-type mice, these mice displayed reduced pain responses in two models of chronic pain (inflammatory and neuropathic pain). In a model of chronic inflammatory pain developed by intraplantar injection of complete Freund's adjuvant (CFA), p2rx4 -/- mice exhibited attenuations of pain hypersensitivity to innocuous mechanical stimuli (tactile allodynia) and also of the CFA-induced swelling of the hindpaw. A most striking phenotype was observed in a test of neuropathic pain: tactile allodynia caused by an injury to spinal nerve was markedly blunted in p2rx4 -/- mice. By contrast, pain hypersensitivity to a cold stimulus (cold allodynia) after the injury was comparable in wild-type and p2rx4 -/- mice. Together, these findings reveal a predominant contribution of P2X4R to nerve injury-induced tactile allodynia and, to the lesser extent, peripheral inflammation. Loss of P2X4R produced no defects in acute physiological pain or tissue damaged-induced pain, highlighting the possibility of a therapeutic benefit of blocking P2X4R in the treatment of chronic pain, especially tactile allodynia after nerve injury.  相似文献   

11.
Neuropathic pain after spinal cord injury (SCI) is developed in about 80% of SCI patients and there is no efficient therapeutic drug to alleviate SCI-induced neuropathic pain. Here we examined the effect of estrogen on SCI-induced neuropathic pain at below-level and its effect on neuroinflammation as underlying mechanisms. Neuropathic pain is developed at late phase after SCI and a single dose of 17β-estradiol (100, 300?μg/kg) were administered to rats with neuropathic pain after SCI through intravenous injection. As results, both mechanical allodynia and thermal hyperalgesia were significantly reduced by 17β-estradiol compared to vehicle control. Both microglia and astrocyte activation in the lamina I and II of L4-5 dorsal horn was also inhibited by 17β-estradiol. In addition, the levels of p-p38MAPK and p-ERK known to be activated in microglia and p-JNK known to be activated in astrocyte were significantly decreased by 17β-estradiol. Furthermore, the mRNA expression of inflammatory mediators such as Il-1β, Il-6, iNos, and Cox-2 was more attenuated in 17β-estradiol-treated group than in vehicle-treated group. Particularly, we found that the analgesic effect by 17β-estradiol was mediated via estrogen receptors, which are expressed in dorsal horn neurons. These results suggest that 17β-estradiol may attenuate SCI-induced neuropathic pain by inhibiting microglia and astrocyte activation followed inflammation.  相似文献   

12.
迄今,有关个体的疼痛程度和炎症程度之间的精确关系一直存在争论,主要原因是缺乏能够同时反映多种痛(尤其是可鉴别疼痛即早期和持续期)的炎症模型以及定量方法的合理应用。因此,本研究在啮齿类动物评价了外周皮下组织致炎后炎症水肿与伤害性反应以及痛敏之间的相关性。为了更好地认识炎症特异性特征在治疗中的价值,我们对非甾体类抗炎药的作用效果也进行了评价。将一个剂量的蜜蜂毒(0.05mg/0.025m1)注入12个近交系(129P3/J、A/J、AKR/J、BALB/cJ、C3H/HeJ、C57BL/6J、C57BL/10J、C58/J、CBA/J、DBA/2J、RIIIS/J和SM/J)4、鼠或6个剂量的蜜蜂毒(0.001、0.005、0.01、0.05、0.1、0、2mg/0.05m1)注入远交系(Sprague-Dawley)大鼠的一侧足底皮下,分别检测自发伤害性反应、热和机械性痛敏,以及炎症的水肿和局部皮温,然后对组间和组内数据进行相关性分析。此外,观察非甾体类抗炎药吲哚美辛对痛和炎症的作用效果。结果显示:(1)炎症水肿程度与注射侧自发缩足反射次数、舔足抬足时间等伤害性反射程度呈高度正相关(P≤0.003),而与热或机械性痛敏的程度没有相关性;(2)吲哚美辛(0.5、2.5、25mg/kg,i.p.,稀释于60%二甲基桠枫)可以剂量依赖性地抑制炎症水肿和自发伤害性反应,但是对热或机械性痛敏却只有在最高剂量下才有作用。这些结果提示,炎症水肿过程可能只参与动物受炎症刺激而引起的即早自发伤害性反应过程,而不参与与临床更加密切相关的痛敏过程。这个分析结果为确定抗炎治疗有益于缓解多种炎性痛中的哪个靶表证提供了一个有用的分析方法。  相似文献   

13.
The leaf essential oil from Croton sonderianus (EOCS) was evaluated for antinociceptive activity in mice using chemical and thermal models of nociception. Given orally, the essential oil at doses of 50, 100 and 200 mg/kg produced significant inhibitions on chemical nociception induced by intraperitoneal acetic acid and subplantar formalin or capsaicin injections. However, it evidenced no efficacy against thermal nociception in hot-plate test. More prominent inhibition of acetic acid-induced writhing and capsaicin-induced hind-paw licking responses was observed at 100 and 200 mg/kg of EOCS. At similar doses, the paw licking behavior in formalin test was more potently suppressed during the late phase (20-25 min, inflammatory) than in early phase (0-5 min, neurogenic). The EOCS-induced antinociception in both capsaicin and formalin tests was insensitive to naloxone (1 mg/kg, s.c.), but was significantly antagonized by glibenclamide (2 mg/kg, i.p.). In mice, the essential oil (100 and 200 mg/kg) neither significantly enhanced the pentobarbital-sleeping time nor impaired the motor performance in rota-rod test, indicating that the observed antinociception is unlikely due to sedation or motor abnormality. These results suggest that EOCS produces antinociception possibly involving glibenclamide-sensitive KATP+ channels, which merit further studies on its efficacy in more specific models of hyperalgesia and neuropathic pain.  相似文献   

14.
Thiamine monophosphatase (TMPase, also known as fluoride-resistant acid phosphatase) is a classic histochemical marker of small-diameter dorsal root ganglia neurons. The molecular identity of TMPase is currently unknown. We found that TMPase is identical to the transmembrane isoform of prostatic acid phosphatase (PAP), an enzyme with unknown molecular and physiological functions. We then found that PAP knockout mice have normal acute pain sensitivity but enhanced sensitivity in chronic inflammatory and neuropathic pain models. In gain-of-function studies, intraspinal injection of PAP protein has potent antinociceptive, antihyperalgesic, and antiallodynic effects that last longer than the opioid analgesic morphine. PAP suppresses pain by functioning as an ecto-5'-nucleotidase. Specifically, PAP dephosphorylates extracellular adenosine monophosphate (AMP) to adenosine and activates A1-adenosine receptors in dorsal spinal cord. Our studies reveal molecular and physiological functions for PAP in purine nucleotide metabolism and nociception and suggest a novel use for PAP in the treatment of chronic pain.  相似文献   

15.
The peptide nociceptin/orphanin FQ (N/OFQ) and its receptor ORL-1, also designated opioid receptor 4 (OP(4)) are involved in the modulation of nociception. Using OP(4)-knockout mice, we have studied their response following opioid receptor stimulation and under neuropathic conditions.In vas deferens from wild-type and OP(4)-knockout mice, DAMGO (mu/OP(3) agonist), deltorphine II (delta/OP(1) agonist) and (-)-U-50488 (kappa/OP(2) agonist) induced similar concentration-dependent inhibition of electrically-evoked contractions. Naloxone and naltrindole (delta/OP(1) antagonists) shifted the curves of DAMGO (pA(2)=8.6) and deltorphine II (pA(2)=10.2) to the right, in each group. In the hot-plate assay, N/OFQ (10 nmol per mouse, i.t.) increased baseline latencies two-fold in wild-type mice while morphine (10mg/kg, s.c.), deltorphine II (10 nmol per mouse, i.c.v.) and dynorphin A (20 nmol per mouse, i.c.v.) increased hot-plate latencies by about four- to five-fold with no difference observed between wild-type and knockout mice. Furthermore, no change was evident in the development of the neuropathic condition due to chronic constriction injury (CCI) of the sciatic nerve, after both thermal and mechanical stimulation.Altogether these results suggest that the presence of OP(4) receptor is not crucial for (1) the development of either acute or neuropathic nociceptive responses, and for (2) the regulation of full receptor-mediated responses to opioid agonists, even though compensatory mechanisms could not be excluded.  相似文献   

16.
Song XS  Xu YB  Cao JL  He JH  Zhang LC  Zeng YM 《生理学报》2005,57(2):139-146
采用行为学、免疫组织化学和Western blot方法,观察鞘内注射细胞外信号调节激酶(extracellular signal-regulate kinase,ERK)信号转导通路阻滞剂对慢性压迫性损伤(chronic constriction injury,CCI)大鼠痛行为及脊髓背角内磷酸化cAMP反应元件结合蛋白(phosphorylated cAMP response-element binding protein,pCREB)和Fos表达变化的影响,探讨ERK/CREB转导通路在神经病理性疼痛中的作用。结果表明,CCI可明显增加双侧脊髓背角pCREB、损伤侧脊髓背角浅层Fos阳性神经元表达,以CCI后3与5d时尤为显著。鞘内沣射促分裂原活化蛋白激酶激酶(mitogen-activated protein kinase kinase,MEK)阻滞剂U0126及ERK反义寡核苷酸在减轻大鼠痛行为的同时,能明显抑制双侧脊髓背角内pCREB的表达,同时,Fos阳性神经元的表达也明显减少。大鼠痛行为及脊髓背角pCREB和Fos的表达在时相上一致。上述结果提示pCREB参与pERK介导的神经病理性疼痛。  相似文献   

17.
The cutaneous nociceptive response threshold to mechanical and thermal stimulation, the development of hyperalgesia and plasma extravasation after subcutaneous injection of carrageenan and the development of autotomy behaviour after nerve section were assessed in interleukin-6-deficient (IL-6−/−) and age-matched wild-type (IL-6+/+) mice. IL-6−/−mice had significantly lower response threshold to both mechanical and thermal stimulation in comparison to IL-6+/+controls. Both IL-6−/−and IL-6+/+mice developed hyperalgesia to mechanical and thermal stimulation after localized carrageenan injection, but the magnitude of the hyperalgesia was less in the IL-6−/−than in the IL-6+/+controls. IL-6−/−mice also exhibited less plasma extravasation after carrageenan injection. No difference was noted between males and females in basal nociception and inflammatory hyperalgesia. However, female IL-6−/−mice exhibited autotomy behaviour, a sign of neuropathic pain, significantly more frequently and after a shorter interval following peripheral nerve injury than male IL-6−/−or male and female IL-6+/+mice. It is suggested that IL-6−/−mice exhibited numerous changes in nociceptive responses compared to controls, some of which are sex related. The mechanisms of these changes in relation to null-mutation of the IL-6 gene and the influence of genetic background are discussed.  相似文献   

18.
The present study was undertaken to determine the effects of intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) melatonin on mechanical allodynia and thermal hyperalgesia in mice with partial tight ligation of the sciatic nerve, and how the nitric oxide (NO) precursor l-arginine and the opiate antagonist naloxone influence this effect. A plantar analgesic meter was used to assess thermal hyperalgesia, and nerve injury-induced mechanical hyperalgesia was assessed with von Frey filaments. 1-5 weeks following the surgery, marked mechanical allodynia and thermal hyperalgesia developed in neuropathic mice. Intracerebroventricular and intraperitoneal melatonin, with its higher doses, produced a blockade of thermal hyperalgesia, but not mechanical allodynia. Administration of both l-arginine and naloxone, at doses which produced no effect on their own, partially reversed antihyperalgesic effect of melatonin. These results suggest that although it has different effects on neuropathic pain-related behaviors, melatonin may have clinical utility in neuropathic pain therapy in the future. It is also concluded that l-arginine-NO pathway and opioidergic system are involved in the antihyperalgesic effect of melatonin in nerve-injured mice.  相似文献   

19.
BackgroundPeripheral nerve injury can produce chronic and ultimately neuropathic pain. The chronic constriction injury (CCI) model has provided a deeper understanding of nociception and chronic pain. Loganin is a well-known herbal medicine with glucose-lowering action and neuroprotective activity.PurposeThis study investigated the molecular mechanisms by which loganin reduced CCI-induced neuropathic pain.MethodsSprague–Dawley rats were randomly divided into four groups: sham, sham+loganin, CCI and CCI+loganin. Loganin (1 or 5 mg/kg/day) was injected intraperitoneally once daily for 14 days, starting the day after CCI. For behavioral testing, mechanical and thermal responses were assessed before surgery and on d1, d3, d7 and d14 after surgery. Sciatic nerves (SNs) were collected to measure proinflammatory cytokines. Proximal and distal SNs were collected separately for Western blotting and immunofluorescence studies.ResultsThermal hyperalgesia and mechanical allodynia were reduced in the loganin-treated group as compared to the CCI group. Loganin (5 mg/kg/day) prevented CCI from inducing proinflammatory cytokines (TNF-α, IL-1β), inflammatory proteins (TNF-α, IL-1β, pNFκB, pIκB/IκB, iNOS) and receptor (TNFR1, IL-1R), adaptor protein (TRAF2) of TNF-α, and Schwann cell demyelination and axonal damage. Loganin also blocked IκB phosphorylation (p-IκB). Double immunofluorescent staining further demonstrated that pNFκB/pIκB protein was reduced by loganin in Schwann cells on d7 after CCI. In the distal stumps of injured SN, Schwann cell demyelination was correlated with pain behaviors in CCI rats.ConclusionOur findings indicate that loganin improves CCI-induced neuroinflammation and pain behavior by downregulating TNF-α/IL-1β-dependent NF-κB activation.  相似文献   

20.
Attenuated neuropathic pain in Cav3.1 null mice   总被引:1,自引:0,他引:1  
Na HS  Choi S  Kim J  Park J  Shin HS 《Molecules and cells》2008,25(2):242-246
To assess the role of alpha(1G) T-type Ca2+ channels in neuropathic pain after L5 spinal nerve ligation, we examined behavioral pain susceptibility in mice lacking CaV3.1 (alpha1G(-/-)), the gene encoding the pore-forming units of these channels. Reduced spontaneous pain responses and an increased threshold for paw withdrawal in response to mechanical stimulation were observed in these mice. The alpha1G(-/-) mice also showed attenuated thermal hyperalgesia in response to both low-(IR30) and high-intensity (IR60) infrared stimulation. Our results reveal the importance of alpha(1G) T-type Ca2+ channels in the development of neuropathic pain, and suggest that selective modulation of alpha1G subtype channels may provide a novel approach to the treatment of allodynia and hyperalgesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号