首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

The receptor for advanced glycation end-products (RAGE) has been implicated in the pathogenesis of arthritis. We conducted this study to determine the effect of interleukin (IL)-17 on the expression and production of RAGE in fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA). The role of nuclear factor-κB (NF-κB) activator 1 (Act1) in IL-17-induced RAGE expression in RA-FLS was also evaluated.

Methods

RAGE expression in synovial tissues was assessed by immunohistochemical staining. RAGE mRNA production was determined by real-time polymerase chain reaction. Act-1 short hairpin RNA (shRNA) was produced and treated to evaluate the role of Act-1 on RAGE production.

Results

RAGE, IL-17, and Act-1 expression increased in RA synovium compared to osteoarthritis synovium. RAGE expression and production increased by IL-17 and IL-1β (*P <0.05 vs. untreated cells) treatment but not by tumor necrosis factor (TNF)-α in RA-FLS. The combined stimuli of both IL-17 and IL-1β significantly increased RAGE production compared to a single stimulus with IL-17 or IL-1β alone (P <0.05 vs. 10 ng/ml IL-17). Act-1 shRNA added to the RA-FLS culture supernatant completely suppressed the enhanced production of RAGE induced by IL-17.

Conclusions

RAGE was overexpressed in RA synovial tissues, and RAGE production was stimulated by IL-17 and IL-1β. Act-1 contributed to the stimulatory effect of IL-17 on RAGE production, suggesting a possible inhibitory target for RA treatment.  相似文献   

2.
Human interleukin 15 (IL-15) circulates in blood as a stable molecular complex with the soluble IL-15 receptor alpha (sIL-15Rα). This heterodimeric IL-15:sIL-15Rα complex (hetIL-15) shows therapeutic potential by promoting the growth, mobilization and activation of lymphocytes and is currently evaluated in clinical trials. Favorable pharmacokinetic properties are associated with the heterodimeric formation and the glycosylation of hetIL-15, which, however, remains largely uncharacterized. We report the site-specific N- and O-glycosylation of two clinically relevant large-scale preparations of HEK293-derived recombinant human hetIL-15. Intact IL-15 and sIL-15Rα and derived glycans and glycopeptides were separately profiled using multiple LC-MS/MS strategies. IL-15 Asn79 and sIL-15Rα Asn107 carried the same repertoire of biosynthetically-related N-glycans covering mostly α1-6-core-fucosylated and β-GlcNAc-terminating complex-type structures. The two potential IL-15 N-glycosylation sites (Asn71 and Asn112) located at the IL-2 receptor interface were unoccupied. Mass analysis of intact IL-15 confirmed its N-glycosylation and suggested that Asn79-glycosylation partially prevents Asn77-deamidation. IL-15 contained no O-glycans, whereas sIL-15Rα was heavily O-glycosylated with partially sialylated core 1 and 2-type mono- to hexasaccharides on Thr2, Thr81, Thr86, Thr156, Ser158, and Ser160. The sialoglycans displayed α2-3- and α2-6-NeuAc-type sialylation. Non-human, potentially immunogenic glycoepitopes (e.g. N-glycolylneuraminic acid and α-galactosylation) were not displayed by hetIL-15. Highly reproducible glycosylation of IL-15 and sIL-15Rα of two batches of hetIL-15 demonstrated consistent manufacturing and purification. In conclusion, we document the heterogeneous and reproducible N- and O-glycosylation of large-scale preparations of the therapeutic candidate hetIL-15. Site-specific mapping of these molecular features is important to evaluate the consistent large-scale production and clinical efficacy of hetIL-15.  相似文献   

3.

Introduction

The aim of this study was to examine the effect of blocking Toll-like receptor 2 (TLR2) in rheumatoid arthritis (RA) synovial cells.

Methods

RA synovial tissue biopsies, obtained under direct visualization at arthroscopy, were established as synovial explant cultures ex vivo or snap frozen for immunohistology. Mononuclear cell cultures were isolated from peripheral blood and synovial fluid of RA patients. Cultures were incubated with the TLR1/2 ligand, Pam3CSK4 (200 ng, 1 and 10 μg/ml), an anti-TLR2 antibody (OPN301, 1 μg/ml) or an immunoglobulin G (IgG) (1 μg/ml) matched control. The comparative effect of OPN301 and adalimumab (anti-tumour necrosis factor alpha) on spontaneous release of proinflammatory cytokines from RA synovial explants was determined using quantitative cytokine MSD multiplex assays or ELISA. OPN301 penetration into RA synovial tissue explants cultures was assessed by immunohistology.

Results

Pam3CSK4 significantly upregulated interleukin (IL)-6 and IL-8 in RA peripheral blood mononuclear cells (PBMCs), RA synovial fluid mononuclear cells (SFMCs) and RA synovial explant cultures (P < 0.05). OPN301 significantly decreased Pam3CSK4-induced cytokine production of tumour necrosis factor alpha (TNF-α), IL-1β, IL-6, interferon (IFN)-γ and IL-8 compared to IgG control in RA PBMCs and SFMCs cultures (all P < 0.05). OPN301 penetration of RA synovial tissue cultures was detected in the lining layer and perivascular regions. OPN301 significantly decreased spontaneous cytokine production of TNF-α, IL-1β, IFN-γ and IL-8 from RA synovial tissue explant cultures (all P < 0.05). Importantly, the inhibitory effect of OPN on spontaneous cytokine secretion was comparable to inhibition by anti-TNFα monoclonal antibody adalimumab.

Conclusions

These findings further support targeting TLR2 as a potential therapeutic agent for the treatment of RA.  相似文献   

4.
5.
6.

Background

IRX-2 is a primary biologic which has been used for the therapy of head and neck squamous cell cancer (HNSCC) with promising clinical results. Since NK-cell function is compromised in HNSCC patients, we tested the effects of IRX-2 on the restoration of human NK-cell functions in vitro.

Methods

Peripheral blood mononuclear cells (PBMC) were isolated from 23 HNSCC patients and 10 normal controls (NC). The NK-cell phenotype and functions were compared before and after culture?±?IRX-2 or?±?50?IU/ml rhIL-2. Flow cytometry was used to study the NK-cell phenotype, cytotoxic activity and cytokine expression.

Results

Impaired NK-cell cytotoxicity in HNSCC patients was related to lower expression of NKG2D, NKp30 and NKp46 receptors (P?P?P?P?P?Conclusions IRX-2 was more effective than IL-2 in enhancing NK-cell cytotoxicity and protecting NK-cell function of HNSCC patients in vitro, emphasizing the potential advantage of IRX-2 as a component of future therapies for HNSCC.  相似文献   

7.
Our objective was to clarify the heterogeneity in response to infliximab treatment in rheumatoid arthritis (RA); to this end, a bioassay was designed to explore the contribution of circulating tumour necrosis factor (TNF)-α bioactivity and its possible link to response. The bioassay is based on the induction of IL-6 and osteoprotegerin (OPG) production by synoviocytes in response to TNF-α. RA synoviocytes were cultured with TNF-α (5 ng/ml) and 42 RA plasma samples collected just before starting therapy. Levels of IL-6 and OPG were measured in supernatants. In 20 of the patients, plasma samples collected before and 4 hours after the first and the ninth infusions were tested in the same way. Plasma concentrations of TNF-α and p55 and p75 soluble receptors were measured using ELISA. TNF-α induced IL-6 and OPG production by synoviocytes, which was further increased with patient plasma dilutions and inhibited by infliximab. With plasma samples obtained before the first infusion, the IL-6-induced production was greater in patients with a good clinical response than in the poor responders (44.4 ± 23.3 ng/ml versus 27.4 ± 20.9 ng/ml; P = 0.05). This high circulating TNF-α bioactivity was strongly inhibited with the first infliximab infusion. The difference between IL-6 levels induced with plasma samples obtained before and 4 hours after the first infusion was greater in patients with a good clinical response (40.0 ± 23.7 ng/ml versus 3.4 ± 10.0 ng/ml; P = 0.001). Similar findings were obtained for OPG production (7.0 ± 6.2 ng/ml versus 0.0 ± 3.0 ng/ml; P < 0.05). Levels of circulating TNF-α bioactivity were predictive of clinical response to TNF-α inhibition, confirming a key role for TNF-α in these RA patients.  相似文献   

8.

Background

COPD patients have increased numbers of macrophages and neutrophils in the lungs. Interleukin-6 (IL-6) trans-signaling via its soluble receptor sIL-6R, governs the influx of innate immune cells to inflammatory foci through regulation of the chemokine CCL3. We hypothesized that there would be enhanced levels of IL-6, sIL-6R and CCL3 in COPD sputum.

Methods

59 COPD patients, 15 HNS and 15 S underwent sputum induction and processing with phosphate buffered saline to obtain supernatants for IL-6, sIL-6R and CCL3 analysis. Cytoslides were produced for differential cell counting and immunocytochemistry (COPD; n = 3) to determine cell type surface expression of the CCL3 receptors CCR5 and CCR1.

Results

COPD patients expressed higher levels (p < 0.05) of sIL-6R and CCL3 compared to controls (sIL-6R medians pg/ml: COPD 166.4 vs S 101.1 vs HNS 96.4; CCL3 medians pg/ml: COPD 117.9 vs S 0 vs HNS 2.7). COPD sIL-6R levels were significantly correlated with sputum neutrophil (r = 0.5, p < 0.0001) and macrophage (r = 0.3, p = 0.01) counts. Immunocytochemical analysis revealed that CCR5 and CCR1 were exclusively expressed on airway macrophages.

Conclusion

Enhanced airway generation of sIL-6R may promote IL-6 trans-signaling in COPD. Associated upregulation of CCL3 may facilitate the recruitment of macrophages into the airways by ligation of CCR1 and CCR5.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0103-4) contains supplementary material, which is available to authorized users.  相似文献   

9.

Introduction

To assess the efficacy and safety of the interleukin-1 receptor (IL-1R) inhibitor anakinra in adult patients with refractory Still's disease.

Methods

Twenty-five patients (13 males and 12 females, median age 32 years, median disease duration seven months) with Still's disease were treated with subcutaneous injections of anakinra (100 mg/day). Treatment was given as adjunct therapy in 16 patients and as standalone in 9 patients for a median time of 15 months (range 1.5-71). The clinical and laboratory parameters during follow-up were recorded.

Results

In 84% of patients the clinical activity resolved completely within a few days (median time 0.2 months), and response was maintained until the last visit in all but one patient. A complete response of all disease-related symptoms (clinical and laboratory) occurred subsequently within a median time of three months in 80% of patients. A partial clinical and laboratory improvement was shown in 12% and 16% of patients, respectively. The Visualized Analogue Scale and Health Assessment Questionnaire scores significantly decreased during treatment. The proportion of patients achieving the American College of Rheumatology 20 (ACR20) score (20% improvement) was 82% at one month and improved to 100% at one year. The mean oral corticosteroid dose was significantly reduced at each visit. Anakinra was discontinued due to unresponsiveness in one patient and due to relapsing disease in another. Treatment was also withdrawn in three patients with severe skin reactions (urticaria). Seven patients experienced an infection during follow-up.

Conclusions

The rapid and sustained response in the majority of our patients encourages the use of anakinra in adults with Still's disease.  相似文献   

10.

Background

Cetuximab is an anti-epidermal growth factor receptor (EGFR) monoclonal antibody that prolongs survival in the treatment for head and neck cancer (HNC), but only in 10–20 % of patients. An immunological mechanism of action such as natural killer (NK) cell–mediated antibody-dependent cellular cytotoxicity (ADCC) has been suggested. We investigated the effects of activating toll-like receptor (TLR)-8 to enhance activity of cetuximab-stimulated, FcγR-bearing cells.

Objective

To determine the capability of TLR8-stimulation to enhance the activation and function of NK cells and dendritic cells (DC) in the presence of cetuximab-coated HNC cells.

Methods

Peripheral blood mononuclear cells (PBMC), NK, DC, and CD8+ T cells were isolated and analyzed using 51Cr release ADCC, flow cytometry analysis, cytokine ELISA, and EGFR853-861 tetramer staining.

Results

TLR8 stimulation of unfractionated PBMC led to enhanced cetuximab-mediated ADCC in healthy donors (p < 0.01) and HNC patients (p < 0.001), which was dependent on NK cells. Secretion of Th1 cytokines TNFα (p < 0.0001), IFNγ (p < 0.0001), and IL-12p40 (p < 0.005) was increased. TLR8 stimulation of PBMC augmented cetuximab-enhanced NK cell degranulation (p < 0.001). TLR8-stimulated NK cells enhanced DC maturation markers CD80, CD83, and CD86 in co-culture with cetuximab-treated HNC cells. TLR8 stimulation of NK-DC co-cultures significantly increased DC priming of EGFR-specific CD8+ T cells in the presence of cetuximab.

Discussion

VTX-2337 and cetuximab combination therapy can activate innate and adaptive anti-cancer immune responses. Further investigation in human trials will be important for determining the clinical benefit of this combination and for determining biomarkers of response.  相似文献   

11.
We investigated the serum concentrations of interleukin-6 (IL-6) and two IL-6 family of cytokines (leukaemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) as well as IL-6 soluble receptor (sIL-6R) using an enzyme-linked immunosorbent assay (ELISA) in 66 patients with rheumatoid arthritis (RA) and 24 healthy controls. We examined a possible association between the serum levels of these peptides and RA activity according to the Mallya and Mace scoring system and Ritchie''s index. We also evaluated the correlation between the serum levels of IL-6, LIF, CNTF and sIL-6R and duration of the disease and calculated sIL-6R/IL-6 ratio in RA patients and in the control group. IL-6 and sIL-6R were detectable in all 66 patients with RA and 24 normal individuals. LIF was also found in the serum of all patients with RA and in 16 (66.7%) normal individuals. In contrast CNTF was measurable only in 15 (22.7%) patients with RA and 24 (33.3%) normal individuals. The highest IL-6 and sIL-6R levels were found in the patients with Stages 3 and 4 of RA activity and the lowest in the control group. In contrast there were no statistically significant differences between the LIF and CNTF levels in RA patients and normal individuals. We found positive correlation between IL-6 and sIL-6R concentrations and Ritchie''s index and a lack of such correlation with LIF and CNTF. IL-6 serum level correlated positively with the disease duration, but sIL-6R, LIF and CNTF did not. Serum sIL-6R/IL-6 ratio was significantly lower in RA patients than in healthy controls. In conclusion, an increase in the serum levels of IL-6 and sIL-6R, but not LIF and CNTF concentrations, may be useful markers for RA activity.  相似文献   

12.
13.
Liu Y  Mu R  Wang S  Long L  Liu X  Li R  Sun J  Guo J  Zhang X  Guo J  Yu P  Li C  Liu X  Huang Z  Wang D  Li H  Gu Z  Liu B  Li Z 《Arthritis research & therapy》2010,12(6):R210-13

Introduction

Rheumatoid arthritis (RA) is a T-cell-mediated systemic autoimmune disease, characterized by synovium inflammation and articular destruction. Bone marrow mesenchymal stem cells (MSCs) could be effective in the treatment of several autoimmune diseases. However, there has been thus far no report on umbilical cord (UC)-MSCs in the treatment of RA. Here, potential immunosuppressive effects of human UC-MSCs in RA were evaluated.

Methods

The effects of UC-MSCs on the responses of fibroblast-like synoviocytes (FLSs) and T cells in RA patients were explored. The possible molecular mechanism mediating this immunosuppressive effect of UC-MSCs was explored by addition of inhibitors to indoleamine 2,3-dioxygenase (IDO), Nitric oxide (NO), prostaglandin E2 (PGE2), transforming growth factor β1 (TGF-β1) and interleukin 10 (IL-10). The therapeutic effects of systemic infusion of human UC-MSCs on collagen-induced arthritis (CIA) in a mouse model were explored.

Results

In vitro, UC-MSCs were capable of inhibiting proliferation of FLSs from RA patients, via IL-10, IDO and TGF-β1. Furthermore, the invasive behavior and IL-6 secretion of FLSs were also significantly suppressed. On the other hand, UC-MSCs induced hyporesponsiveness of T cells mediated by PGE2, TGF-β1 and NO and UC-MSCs could promote the expansion of CD4+ Foxp3+ regulatory T cells from RA patients. More importantly, systemic infusion of human UC-MSCs reduced the severity of CIA in a mouse model. Consistently, there were reduced levels of proinflammatory cytokines and chemokines (TNF-α, IL-6 and monocyte chemoattractant protein-1) and increased levels of the anti-inflammatory/regulatory cytokine (IL-10) in sera of UC-MSCs treated mice. Moreover, such treatment shifted Th1/Th2 type responses and induced Tregs in CIA.

Conclusions

In conclusion, human UC-MSCs suppressed the various inflammatory effects of FLSs and T cells of RA in vitro, and attenuated the development of CIA in vivo, strongly suggesting that UC-MSCs might be a therapeutic strategy in RA. In addition, the immunosuppressive activitiy of UC-MSCs could be prolonged by the participation of Tregs.  相似文献   

14.

Background

Treatment for children with high-risk neuroblastoma with anti-disialoganglioside mAb ch14.18, IL-2, and GM-CSF plus 13-cis-retinoic acid after myeloablative chemotherapy improves survival, but 40 % of patients still relapse during or after this therapy. The microenvironment of high-risk neuroblastoma tumors includes macrophages, IL-6, and TGFβ1. We hypothesized that this microenvironment suppresses anti-tumor functions of natural killer (NK) cells and that lenalidomide, an immune-modulating drug, could overcome suppression.

Methods

Purified NK cells were cultured with IL-2, neuroblastoma/monocyte-conditioned culture medium (CM), IL-6, TGFβ1, and lenalidomide in various combinations and then characterized using cytotoxicity (direct and antibody-dependent cell-mediated cytotoxicity), cytokine, flow cytometry, and Western blotting assays. Anti-tumor activity of NK cells with lenalidomide, ch14.18, or both was evaluated with a xenograft model of neuroblastoma.

Results

CM from neuroblastoma/monocyte co-cultures contains IL-6 and TGFβ1 that suppress IL-2 activation of NK cell cytotoxicity and IFNγ secretion. IL-6 and TGFβ1 activate the STAT3 and SMAD2/3 pathways in NK cells and suppress IL-2 induction of cytotoxicity, granzymes A and B release, perforin expression, and IFNγ secretion. Lenalidomide blocks IL-6 and TGFβ1 activation of these signaling pathways and inhibits their suppression of NK cells. Neuroblastoma cells in NOD/SCID mice exhibit activated STAT3 and SMAD2/3 pathways. Their growth is most effectively inhibited by co-injected peripheral blood mononuclear cells (PBMC) containing NK cells when mice are treated with both ch14.18 and lenalidomide.

Conclusion

Immunotherapy with anti-tumor cell antibodies may be improved by lenalidomide, which enhances activation of NK cells and inhibits their suppression by IL-6 and TGFβ1.  相似文献   

15.
As interleukin-6 (IL-6), its soluble receptor (sIL-6R), and the IL-6/sIL-6R complex is transiently elevated in response to prolonged moderate-intensity exercise, this study investigated how these levels would be modulated by an acute bout of high-intensity intermittent (HIIT) exercise in comparison to continuous moderate-intensity exercise (MOD). This study also investigated the expression of the differentially spliced sIL-6R (DS-sIL-6R) in response to exercise. Eleven healthy males completed two exercise trials matched for external work done (582 ± 82 kJ). During MOD, participants cycled at 61.8 (2.6)% VO2peak for 58.7 (1.9) min, while HIIT consisted of ten 4-min intervals cycling at 87.5 (3.4)% [(V)\dot]O2peak \dot{V}{{\hbox{O}}_{2{\rm{peak}}}} separated by 2-min rest. Blood samples were collected pre-exercise, post-exercise, and 1.5, 6, and 23 h post-exercise. Plasma IL-6, sIL-6R, IL-6/sIL-6R complex, and DS-sIL-6R levels were measured by enzyme-linked immunosorbent assay. HIIT caused a significantly greater increase in IL-6 than MOD (P = 0.018). Both MOD and HIIT resulted in an increase in sIL-6R and IL-6/sIL-6R complex (P < 0.001), however, this was not significantly different between trials. Soluble IL-6R peaked at 6 h post-exercise in both trials. DS-sIL-6R increased significantly with exercise (P = 0.02), representing 0.49% of the total sIL-6R increase. This investigation has demonstrated that the IL-6 response is greater after intermittent high-intensity exercise than comparable moderate-intensity exercise; however, increased IL-6/sIL-6R complex nor sIL-6R was different between HIIT and MOD. The current study has shown for the first time that elevated sIL-6R after HIIT exercise is derived from both proteolytic cleavage and differential splicing.  相似文献   

16.
17.

Background

Human mast cells are multifunctional cells capable of a wide variety of inflammatory responses. Baicalein (BAI), isolated from the traditional Chinese herbal medicine Huangqin (Scutellaria baicalensis Georgi), has been shown to have anti-inflammatory effects. We examined its effects and mechanisms on the expression of inflammatory cytokines in an IL-1β- and TNF-α-activated human mast cell line, HMC-1.

Methods

HMC-1 cells were stimulated either with IL-1β (10 ng/ml) or TNF-α (100 U/ml) in the presence or absence of BAI. We assessed the expression of IL-6, IL-8, and MCP-1 by ELISA and RT-PCR, NF-κB activation by electrophoretic mobility shift assay (EMSA), and IκBα activation by Western blot.

Results

BAI (1.8 to 30 μM) significantly inhibited production of IL-6, IL-8, and MCP-1 in a dose-dependent manner in IL-1β-activated HMC-1. BAI (30 μM) also significantly inhibited production of IL-6, IL-8, and MCP-1 in TNF-α-activated HMC-1. Inhibitory effects appear to involve the NF-κB pathway. BAI inhibited NF-κB activation in IL-1β- and TNF-α-activated HMC-1. Furthermore, BAI increased cytoplasmic IκBα proteins in IL-1β- and TNF-α-activated HMC-1.

Conclusion

Our results showed that BAI inhibited the production of inflammatory cytokines through inhibition of NF-κB activation and IκBα phosphorylation and degradation in human mast cells. This inhibitory effect of BAI on the expression of inflammatory cytokines suggests its usefulness in the development of novel anti-inflammatory therapies.  相似文献   

18.
ObjectiveTo describe the relationship between the two mechanisms involved in sIL6R generation in rheumatoid arthritis (RA).MethodRA patients were selected from a group of subjects genotyped for the rs8192284 SNP, located at the proteolytic cleavage site of IL-6R. sIL6R and protease levels (ADAM17) were measured and the contribution of alternative splicing in the generation of sIL-6R was evaluated through qRT-PCR.ResultIncreased sIL-6R plasma levels and expression of spliced isoform generating sIL-6R are genotype dependent. ADAM17 concentrations were independent of the genotype studied.ConclusionAlternative splicing and proteolytic cleavage participate in sIL-6R generation in RA. The rs8192284 polymorphism determines the sIL-6R plasma level through differential proteolytic rupture controlled by ADAM17.  相似文献   

19.
IL-15 is a member of the gamma chain family of cytokines (γc – CD132). The IL-15 receptor (IL-15R) complex consists of 3 subunits: the ligand-binding IL-15Rα chain (CD215), the β chain (CD122; also used by IL-2), and the common γ chain. The biological activities of IL-15 are mostly mediated by the IL-15:IL-15Rα complex, produced by the same cell and ‘trans-presented’ to responder cells expressing the IL-15Rβγc. The peculiar and almost unique requirement for IL-15 to be trans-presented by IL-15Rα suggests that the biological effects of IL-15 signaling are tightly regulated even at the level of availability of IL-15. Tissue-specific deletion of IL-15Rα has shown macrophage-and dendritic cell-derived IL-15Rα mediate the homeostasis of different CD8+ T cell subsets. Here we show that hepatocyte and macrophage- specific expression of IL-15Rα is required to maintain the homeostasis of NK and NKT cells in the liver. Thus, homeostasis of IL-15-dependent lymphocyte subsets is also regulated by trans-presentation of IL-15 by non-hematopoietic cells in the tissue environment.  相似文献   

20.

Introduction

IL-1β is a proinflammatory cytokine driving joint inflammation as well as systemic signs of inflammation, such as fever and acute phase protein production.

Methods

ACZ885, a fully human monoclonal antibody that neutralizes the bioactivity of human IL-1β, was generated to study the potent and long-lasting neutralization of IL-1β in mechanistic animal models as well as in a proof-of-concept study in patients with rheumatoid arthritis (RA).

Results

The mouse IL-1 receptor cross-reacts with human IL-1β, and it was demonstrated that ACZ885 can completely suppress IL-1β-mediated joint inflammation and cartilage destruction in mice. This observation prompted us to study the safety, tolerability and pharmacodynamic activity of ACZ885 in RA patients in a small proof-of-concept study – the first to be conducted in humans. Patients with active RA despite treatment with stable doses of methotrexate were enrolled in this dose escalation study. The first 32 patients were split into four cohorts of eight patients each (six were randomly assigned to active treatment and two to placebo). ACZ885 doses were 0.3, 1, 3 and 10 mg/kg, administered intravenously on days 1 and 15. To explore efficacy within 6 weeks of treatment, an additional 21 patients were randomly assigned to the 10 mg/kg cohort, resulting in a total of 20 patients dosed with 10 mg/kg and 15 patients treated with placebo. There was clinical improvement (American College of Rheumatology 20% improvement criteria) at week 6 in the 10 mg/kg treatment group; however, this did not reach statistical significance (P = 0.085). A statistically significant reduction in disease activity score was observed after 4 weeks in the 10 mg/kg group. Onset of action was rapid, because most responders exhibited improvement in their symptoms within the first 3 weeks. C-reactive protein levels decreased in patients treated with ACZ885 within 1 week. ACZ885 was well tolerated. Three patients receiving ACZ885 developed infectious episodes that required treatment. No anti-ACZ885 antibodies were detected during the study.

Conclusion

ACZ885 administration to methotrexate-refractory patients resulted in clinical improvement in a subset of patients. Additional studies to characterize efficacy in RA and to determine the optimal dose regimen appear warranted.

Trial Registration

ClinicalTrials.gov identifier NCT00619905.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号