首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We describe a method of separating prestalk and prespore cells of Dictyostelium discoideum slugs using a self-generating Percoll gradient. This method gives quantitative recovery of cells and good purity. Separated prestalk and prespore cells possess different levels of the enzymes UDP galactose :polysaccharide transferase, cAMP phosphodiesterase and glycogen phosphorylase. We have used this method, as well as mechanical dissection of slugs, to examine the fate of separated prestalk and prespore cells in Dictyostelium strains that are able to give rise to mature stalk and spore cells in cell monolayers. The results from such experiments provide direct evidence that prestalk and prespore cells from the migrating slug stage are programmed to differentiate into stalk and spore cells respectively.  相似文献   

3.
Dictyostelium is the only non-metazoan with functionally analyzed SH2 domains and studying them can give insights into their evolution and wider potential. LrrB has a novel domain configuration with leucine-rich repeat, 14-3-3 and SH2 protein–protein interaction modules. It is required for the correct expression of several specific genes in early development and here we characterize its role in later, multicellular development. During development in the light, slug formation in LrrB null (lrrB-) mutants is delayed relative to the parental strain, and the slugs are highly defective in phototaxis and thermotaxis. In the dark the mutant arrests development as an elongated mound, in a hitherto unreported process we term dark stalling. The developmental and phototaxis defects are cell autonomous and marker analysis shows that the pstO prestalk sub-region of the slug is aberrant in the lrrB- mutant. Expression profiling, by parallel micro-array and deep RNA sequence analyses, reveals many other alterations in prestalk-specific gene expression in lrrB- slugs, including reduced expression of the ecmB gene and elevated expression of ampA. During culmination ampA is ectopically expressed in the stalk, there is no expression of ampA and ecmB in the lower cup and the mutant fruiting bodies lack a basal disc. The basal disc cup derives from the pstB cells and this population is greatly reduced in the lrrB- mutant. This anatomical feature is a hallmark of mutants aberrant in signaling by DIF-1, the polyketide that induces prestalk and stalk cell differentiation. In a DIF-1 induction assay the lrrB- mutant is profoundly defective in ecmB activation but only marginally defective in ecmA induction. Thus the mutation partially uncouples these two inductive events. In early development LrrB interacts physically and functionally with CldA, another SH2 domain containing protein. However, the CldA null mutant does not phenocopy the lrrB- in its aberrant multicellular development or phototaxis defect, implying that the early and late functions of LrrB are affected in different ways. These observations, coupled with its domain structure, suggest that LrrB is an SH2 adaptor protein active in diverse developmental signaling pathways.  相似文献   

4.
Abstract. Depending upon environmental conditions, developing cells of the cellular slime mold Dictyostelium discoideum may enter a slug stage in which the cell mass migrates in response to gradients of light and temperature. This developmental stage has often been used to study the divergent differentiation of the cells that will subsequently form spores and stalk in the mature fruiting body. However, still debated is the extent to which the differentiation evident in slug cells is a precondition for development of the mature cells in fruits. Using two-dimensional gel electrophoresis of polypeptides, we have examined the proteins made by prespore and prestalk cells of migrating slugs and by maturing spore and stalk cells. The data indicate that many of the cell-type specific polypeptides in prespore cells of slugs persist as cell-type specific polypeptides of mature spores. Prestalk slug cells, in contrast, do not contain significant amounts of stalk-specific proteins; these proteins appear only during culmination. The precursor cell types also differ in the times and rates of synthesis of cell-specific proteins: prestalk proteins appear much earlier in development than do the prespore, but never reach the levels of expression that the prespore proteins do later in culmination. These findings may explain the well established ability of prespore cells to regulate their cell type more rapidly than do prestalk cells. There are also implications for our general understanding of what is a 'prestalk' gene product.  相似文献   

5.
FbxA is a novel member of a family of proteins that contain an F-box and WD40 repeats and that target specific proteins for degradation via proteasomes. In fruiting bodies formed from cells where the fbxA gene is disrupted (fbxA(-) cells), the spore mass fails to fully ascend the stalk. In addition, fbxA(-) slugs continue to migrate under environmental conditions where the parental strain immediately forms fruiting bodies. Consistent with this latter behaviour, the development of fbxA(-) cells is hypersensitive to ammonia, the signaling molecule that regulates the transition from the slug stage to terminal differentiation. The slug comprises an anterior prestalk region and a posterior prespore region and the fbxA mRNA is highly enriched in the prestalk cells. The prestalk zone of the slug is further subdivided into an anterior pstA region and a posterior pstO region. In fbxA(-) slugs the pstO region is reduced in size and the prespore region is proportionately expanded. Our results indicate that FbxA is part of a regulatory pathway that controls cell fate decisions and spatial patterning via regulated protein degradation.  相似文献   

6.
The avian retroviral v-myb gene and its cellular homologues throughout the animal and plant kingdoms contain a conserved DNA binding domain. We have isolated an insertional mutant of Dictyostelium unable to switch from slug migration to fruiting body formation i.e. unable to culminate. The gene that is disrupted, mybC, codes for a protein with a myb-like domain that is recognized by an antibody against the v-myb repeat domain. During development of myb+ cells, mybC is expressed only in prestalk cells. When developed together with wild-type cells mybC- cells are able to form both spores and stalk cells very efficiently. Their developmental defect is also bypassed by overexpressing cAMP-dependent protein kinase. However even when their defect is bypassed, mybC null slugs and culminates produce little if any of the intercellular signalling peptides SDF-1 and SDF-2 that are believed to be released by prestalk cells at culmination. We propose that the mybC gene product is required for an intercellular signaling process controlling maturation of stalk cells and spores and that SDF-1 and/or SDF-2 may be implicated in this process.  相似文献   

7.
Nature and distribution of the morphogen DIF in the Dictyostelium slug   总被引:11,自引:0,他引:11  
The Dictyostelium slug contains a simple anterior-posterior pattern of prestalk and prespore cells. It is likely that DIF, the morphogen which induces stalk cells, is involved in establishing this pattern. Previous work has shown that a number of distinct species of DIF are released by developing cells and that cell-associated DIF activity increases rapidly during the slug stage of development. In this paper we describe a comparison of the DIF extracted from slugs with the DIF released into the medium. Analysis by high-pressure liquid chromatography (HPLC) using different solvent systems shows that the major species of DIF activity extracted from slugs coelutes with DIF-1, the major species of released DIF and is similarly sensitive to sodium borohydride reduction. Since DIF specifically induces the differentiation of prestalk cells, the anterior cells of the slug, it could be anticipated that DIF is localized in the prestalk region. We have therefore determined the distribution of DIF within the slug. Migrating slugs from strain V12M2 were manually dissected into anterior one-third and posterior two-third fragments and the DIF activity extracted. Surprisingly, we found that DIF was not restricted to the prestalk fragment. Instead there appears to be a reverse gradient of DIF in the slug with at least twice the specific activity of total DIF in the prespore region than in the prestalk region.  相似文献   

8.
9.
10.
Thompson CR  Kay RR 《Molecular cell》2000,6(6):1509-1514
We have constructed a mutant blocked in the biosynthesis of DIF-1, a chlorinated signal molecule proposed to induce differentiation of both major prestalk cell types formed during Dictyostelium development. Surprisingly, the mutant still forms slugs retaining one prestalk cell type, the pstA cells, and can form mature stalk cells. However, the other major prestalk cell type, the pstO cells, is missing. Normal pstO cell differentiation and their patterning in the slug are restored by development on a uniform concentration of DIF-1. We conclude that pstO and pstA cells are in fact induced by separate signals and that DIF-1 is the pstO inducer. Positional information, in the form of DIF-1 gradients, is evidently not required for pstO cell induction.  相似文献   

11.
In Dictyostelium development, prestalk cells first differentiate at scattered positions in the aggregate and then sort out, probably by chemotaxis to cAMP. They may regulate their proportions by selective depletion of the stalk cell inducer, DIF-1. Once sorted, prestalk cells form a DIF-1 sink, which can produce gradients of DIF-1 and its metabolites in the slug. Global movements of cells in the slug may be regulated by cAMP signals, as in aggregation. Terminal differentiation of stalk and spore cells requires activation of cAMP-dependent protein kinase, possibly brought about by ammonia depletion. Finally, a technique for insertional mutagenesis promises the ready isolation of developmental genes.  相似文献   

12.
GSK3 is a multifunctional regulator of Dictyostelium development   总被引:1,自引:0,他引:1  
Glycogen synthase kinase 3 (GSK3) is a central regulator of metazoan development and the Dictyostelium GSK3 homologue, GskA, also controls cellular differentiation. The originally derived gskA-null mutant exhibits a severe pattern formation defect. It forms very large numbers of pre-basal disc cells at the expense of the prespore population. This defect arises early during multicellular development, making it impossible to examine later functions of GskA. We report the analysis of a gskA-null mutant, generated in a different parental strain, that proceeds through development to form mature fruiting bodies. In this strain, Ax2/gskA-, early development is accelerated and slug migration greatly curtailed. In a monolayer assay of stalk cell formation, the Ax2/gskA- strain is hypersensitive to the stalk cell-inducing action of DIF-1 but largely refractory to the repressive effect exerted by extracellular cAMP. During normal development, apically situated prestalk cells express the ecmB gene just as they commit themselves to stalk cell differentiation. In the Ax2/gskA- mutant, ecmB is expressed throughout the prestalk region of the slug, suggesting that GskA forms part of the repressive signalling pathway that prevents premature commitment to stalk cell differentiation. GskA may also play an inductive developmental role, because microarray analysis identifies a large gene family, the 2C family, that require gskA for optimal expression. These observations show that GskA functions throughout Dictyostelium development, to regulate several key aspects of cellular patterning.  相似文献   

13.
Copines are calcium-dependent membrane-binding proteins found in many eukaryotic organisms. We are studying the function of copines using the model organism, Dictyostelium discoideum. When under starvation conditions, Dictyostelium cells aggregate into mounds that become migrating slugs, which can move toward light and heat before culminating into a fruiting body. Previously, we showed that Dictyostelium cells lacking the copine A (cpnA) gene are not able to form fruiting bodies and instead arrest at the slug stage. In this study, we compared the slug behavior of cells lacking the cpnA gene to the slug behavior of wild-type cells. The slugs formed by cpnA- cells were much larger than wild-type slugs and exhibited no phototaxis and negative thermotaxis in the same conditions that wild-type slugs exhibited positive phototaxis and thermotaxis. Mixing as little as 5% wild-type cells with cpnA- cells rescued the phototaxis and thermotaxis defects, suggesting that CpnA plays a specific role in the regulation of the production and/or release of a signaling molecule. Reducing extracellular levels of ammonia also partially rescued the phototaxis and thermotaxis defects of cpnA- slugs, suggesting that CpnA may have a specific role in regulating ammonia signaling. Expressing the lacZ gene under the cpnA promoter in wild-type cells indicated cpnA is preferentially expressed in the prestalk cells found in the anterior part of the slug, which include the cells at the tip of the slug that regulate phototaxis, thermotaxis, and the initiation of culmination into fruiting bodies. Our results suggest that CpnA plays a role in the regulation of the signaling pathways, including ammonia signaling, necessary for sensing and/or orienting toward light and heat in the prestalk cells of the Dictyostelium slug.  相似文献   

14.
We placed a specific inhibitor of cyclic AMP-dependent protein kinase (PKA) under the control of a prestalk-specific promoter. Cells containing this construct form normally patterned slugs, but under environmental conditions that normally trigger immediate culmination, the slugs undergo prolonged migration. Slugs that eventually enter culmination do so normally but arrest as elongated, hairlike structures that contain neither stalk nor spore cells. Mutant cells do not migrate to the stalk entrance when codeveloped with wild-type cells and show greatly reduced inducibility by DIF, the stalk cell morphogen. These results suggest that the activity of PKA is necessary for the altered pattern of movement of prestalk cells at culmination and their differentiation into stalk cells. We propose a model whereby a protein repressor, under the control of PKA, inhibits precocious induction of stalk cell differentiation by DIF and so regulates the choice between slug migration and culmination.  相似文献   

15.
16.
We have produced two monoclonal antibodies specific to the stalk cells of Dictyostelium discoideum fruiting bodies. Both monoclonal antibodies react with high molecular weight proteins previously found to be stalk-specific by two-dimensional gel analysis. One antibody (JAb 1) is specific for a single protein of apparent molecular weight 310 000 which first appears when overt stalk differentiation begins at 20 h. The other monoclonal antibody (JAb 2) is also stalk-specific, though earlier in development it binds to proteins extracted from both prestalk and prespore cells of the migrating slug. It reacts with two proteins in stalks, one of apparent molecular weight 430 000 which is first detected during tip formation at 12 h and a lower molecular weight protein (310 000) detected from 20 h. Although several markers are available for the investigation of prespore/spore differentiation there is a distinct lack of suitable prestalk/stalk markers. The monoclonal antibodies described here are highly specific stalk markers and should prove useful in the study of cell proportioning and terminal differentiation.  相似文献   

17.
Dictyostelium discoideum is a facultative multicellular amoebozoan with cellulose in the stalk and spore coat of its fruiting body as well as in the extracellular matrix of the migrating slug. The organism also harbors a number of cellulase genes. One of them, cbhA, was identified as a candidate cellobiohydrolase gene based on the strong homology of its predicted protein product to fungal cellobiohydrolase I (CBHI). Expression of the cbhA was developmentally regulated, with strong expression in the spores of the mature fruiting body. However, a weak but detectable level of expression was observed in the extracellular matrix at the mound — tipped finger stages, in prestalk O cells, and in the slime sheath of the migrating slug — late culminant stages. A null mutant of the cbhA showed almost normal morphology. However, the developmental timing of the mutant was delayed by 2–4 h. When a c-Myc epitope-tagged CbhA was expressed, it was secreted into the culture medium and was able to bind crystalline cellulose. The CbhA-myc protein was glycosylated, as demonstrated by its ability to bind succinyl concanavalin A-agarose. Moreover, conditioned medium from the cbhA-myc oe strain displayed 4-methylumbelliferyl β-d-cellobioside (4-MUC) digesting activity in Zymograms in which conditioned medium was examined via native-polyacrylamide gel electrophoresis or spotted on an agar plate containing 4-MUC, one of the substrates of cellobiohydrolase. Taken together, these findings indicate that Dictyostelium CbhA is an orthologue of CBH I that is required for a normal rate of development.  相似文献   

18.
Abstract. Conversion of prestalk cells to prespore cells was investigated in normally proportioned as well as prestalk-enriched cell populations under two different conditions: in slugs migrating on agar plates and in suspension cultures of dissociated slug cells in the presence of cAMP. In most experiments, prestalk cells labelled with a fluorescent dye (TRITC) and unlabelled prespore cells were combined together by grafting (for migrating slugs) or by mixing (for suspension cultures) to distinguish conversion of prestalk cells to prespore cells. In both migrating and dissociated slugs, minimal conversion of prestalk to prespore cells was observed when the proportion of prespore cells in the whole population was maintained at a normal level. When the prespore proportion in the initial population was lowered, a considerable fraction of prestalk cells underwent cell-type conversion to become prespore cells or spores. These results indicate that the presence of prespore cells somehow prevents prestalk cells from becoming prespore.  相似文献   

19.
We used two different methods to study the expression pattern of alkaline phosphatase (alp) in Dictyostelium. In situ staining of the endogenous enzyme activity at different stages of development showed that the enzyme was active early in the aggregation stage and localized to the area where the tip of the first finger was initiated. The activity was localized to the anterior region of developing slugs, then became restricted to the region between the prestalk and prespore cells at the culmination stage. In the complete fruiting body, the activity was confined to the lower and upper cup. A second method to study alp expression utilized a beta-galactosidase reporter gene under the control of the alp promoter. A low level of beta-galactosidase activity was observed in vegetative cells, then increased during development. Reporter gene activity was restricted to PstO cells at the slug stage. At the culmination stage, the expression was restricted to prestalk cells at the interface between the prestalk and prespore cells. In the completed fruiting body, the expression was observed in the upper and lower cup.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号