首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The scaling and shift of the gene expression boundary in a developing embryo are two key problems with regard to morphogen gradient formation in developmental biology. In this study, a bigradient model was applied to a nonlinear reaction diffusion system (NRDS) to investigate the location of morphogen gene expression boundary. In contrast to the traditional synthesis–diffusion–degradation model, the introduction of NRDS in this study contributes to the precise gene expression boundary at arbitrary location along the anterior-posterior axis other than simply midembryo even when the linear characteristic lengths of two morphogens are equal. The scaling location depends on the ratio of two morphogen influxes ( \(w\) ) and concentrations ( \(r\) ) as well as the nonlinear reaction diffusion parameters ( \(\alpha , n\) ). We also formulate a direct relationship between the shift in the gene expression boundary and the influx of morphogen and find that enhancing the morphogen influx is helpful to build up a robust gene expression boundary. By analyzing the robustness of the morphogen gene expression boundary and comparing with the relevant results in linear reaction diffusion system, we determine the precise range of the ratio of the two morphogen influxes with a lower shift in the morphogen gene expression boundary and increased system robustness.  相似文献   

2.
A long standing question in developmental biology is how morphogen gradients establish positional information during development. Although the existence of gradients and their role in developmental patterning is no longer in doubt, the ability of cells to respond to different morphogen concentrations has been controversial. In the Drosophila wing disc, Hedgehog (Hh) forms a concentration gradient along the anterior-posterior axis and establishes at least three different gene expression patterns. In a recent study, we challenged the prevailing idea that Hh establishes positional information in a dose-dependent manner and proposed a model in which dynamics of the gradient, resulting from the Hh gene network architecture, determines pattern formation in the wing disc. In this Extra View, we discuss further the methodology used in this study, highlight differences between this and other models of developmental patterning, and also present some questions that remain to be answered in this system.Key words: Hedgehog, developmental patterning, morphogen, dynamics, mathematical modeling  相似文献   

3.
Few mechanisms provide alternatives to morphogen gradients for producing spatial patterns of cells in development. One possibility is based on the sorting out of cells that initially differentiate in a salt and pepper mixture and then physically move to create coherent tissues. Here, we describe the evidence suggesting this is the major mode of patterning in Dictyostelium. In addition, we discuss whether convergent evolution could have produced a conceptually similar mechanism in other organisms.A limited number of processes are thought to regulate the differentiation of specialized cell types and their organization to form larger scale structures, such as organs or limbs, during embryonic development. First, early embryological experiments revealed a patterning process that depends on special “organizing” regions in the embryo. This idea was encapsulated as “positional information” and led to the concept of morphogen gradients (Fig. 1) (Wolpert 1996). In addition, cytoplasmic determinants have been shown to direct development along different lines when they are partitioned unequally between daughter cells by asymmetric cell division (Betschinger and Knoblich 2004). Finally, short-range inductive signaling can specify cells at a local level and when reiterated produces highly ordered structures (Simpson 1990; Freeman 1997; Meinhardt and Gierer 2000).Open in a separate windowFigure 1.Alternative ways of patterning cells during development. (A) Patterning by “positional information”: A group of undifferentiated cells is patterned by a morphogen diffusing from a pre-established source, producing a concentration gradient. Cells respond according to the local morphogen concentration, becoming red, white, or blue. (B, C) Patterning without positional information: This is a two-step process in which different cell types first differentiate mixed up with each other, and then sort out. The initial differentiation can be controlled by strictly local interactions between the cells, as in lateral inhibition (B), or by a global signal to which cells respond with different sensitivities and whose concentration they regulate by negative feedback (C). Once sorting has occurred, the global inducer forms a reverse gradient, which could then convey positional information for further patterning events.The question then arises of whether evolution has devised any further global patterning mechanisms. One possibility that has been repeatedly considered, but not firmly established as a general mechanism, is based on sorting out. In this process, pattern is produced in two steps: (1) Different cell types are initially specified from a precursor pool independent of their position to produce a salt and pepper mixture and (2) the mixture of cell types is resolved into discrete tissues by the physical movement and sorting out of the cells (Fig. 1). Consequently, this mechanism does not involve positional information. However, it can actually provide the conditions under which positional signaling and morphogen gradients can arise, if the resolved tissues then act as sources and sinks for signal molecules.We first describe the powerful evidence that this alternative patterning process is used during the developmental cycle of the social amoeba Dictyostelium discoideum, and then consider the possibility that this patterning strategy may be used more widely.  相似文献   

4.
A large, diverse, and growing number of strategies have been proposed to explain how morphogen gradients achieve robustness and precision. We argue that, to be useful, the evaluation of such strategies must take into account the constraints imposed by competing objectives and performance tradeoffs. This point is illustrated through a mathematical and computational analysis of the strategy of self-enhanced morphogen clearance. The results suggest that the usefulness of this strategy comes less from its ability to increase robustness to morphogen source fluctuations per se, than from its ability to overcome specific kinds of noise, and to increase the fraction of a morphogen gradient within which robust threshold positions may be established. This work also provides new insights into the longstanding question of why morphogen gradients show a maximum range in vivo.In recent years, much research on morphogen gradients has shifted from purely mechanistic questions—how gradients form and how morphogens signal—to strategic ones—how gradients perform well in the face of various kinds of constraints and perturbations. Forty years ago, Francis Crick was among the first to call attention to constraints that morphogens face, noting that the time required to spread a signal by random transport through a tissue varies with the square of distance (Crick 1970). Using order-of-magnitude calculations, he argued that observed biological maxima for morphogen-mediated patterning were just about where they should be if morphogen signals spread by aqueous diffusion.Although the idea that diffusion time is what limits the sizes of morphogen gradients remains untested, Crick''s work established a precedent of seeking explanations for developmental processes in terms of constraints imposed by the physical world. In the area of biological pattern formation, continued interest in how real-world limits constrain mechanisms has led many current investigators to focus on matters of robustness, the engineering term that describes the relative insensitivity of a system''s behavior to perturbations it may be expected to encounter. With respect to morphogen gradients, most work has focused on parametric robustness, i.e., insensitivity to parameter values (e.g., the dosage of genes, levels, or rate constants of enzymes [Eldar et al. 2002; Eldar et al. 2003; Eldar et al. 2004; Bollenbach et al. 2005; Shimmi et al. 2005; White et al. 2007]). Some investigators have also focused on the “precision” of morphogen gradients, which may be understood as robustness to the causes and effects of natural variation among individuals in a population (Houchmandzadeh et al. 2002; Gregor et al. 2007; Tostevin et al. 2007; Bollenbach et al. 2008; Emberly 2008).Remarkably, after hardly a decade of intensive study of such questions, we find ourselves awash in a sea of diverse and intriguing mechanisms for conferring one or another type of robustness on morphogen-mediated patterning. Mechanisms that operate at the level of gradient formation include self-enhanced morphogen degradation (Eldar et al. 2003), facilitated transport (Eldar et al. 2002; Shimmi et al. 2005), serial transcytosis (Bollenbach et al. 2005), presteady state patterning (Bergmann et al. 2007), and competition between morphogens for binding to inhibitors (Ben-Zvi et al. 2008). Mechanisms that operate at the level of morphogen detection and interpretation include morphogenetic apoptosis (Adachi-Yamada and O''Connor 2002), cell rearrangement (Ashe and Briscoe 2006), integration of signals from multiple morphogens (McHale et al. 2006; Morishita and Iwasa 2008), and various types of local cell-to-cell signaling (e.g., Amonlirdviman et al. 2005).Why so many strategies? Biologists are often quick to ascribe multiplicity to redundancy, but the perspective of engineering suggests a different view. Most engineers accept the “no free lunch” principle (also referred to as “conservation of fragility”), which states that any mechanism that increases robustness in one setting (i.e., to one type of perturbation, or with respect to one type of output) always compromises it in another. The fact that every strategy comes at a price has been offered as an explanation for the seemingly inescapable fragility of highly engineered, modern technology (Carlson and Doyle 2002). By building complex machines that resist everything we think of, we inevitably create susceptibilities to the things we neglected. Although biology is not the result of human engineering, we have no reason to believe that natural selection can circumvent the limits that engineers confront.In a world of no free lunch, one must evaluate a strategy not just by what it is good for, but the “price” of using it. With regard to morphogen-mediated patterning, it is reasonable to suggest that diverse strategies exist because each comes at a different price. If so, achieving meaningful biological understanding requires that we engage in a sort of cost-benefit analysis, in which each strategy is evaluated in the context of the performance objectives of the organism and constraints of the physical world. This is a tall order, as there is a great deal we still do not know about the performance needs of developing organisms (for example, for all the work performed so far on morphogen gradient robustness, we still know little about the magnitudes of the perturbations that need to be withstood). Nevertheless, there is no reason not to get started, as even through the early investigation of hard questions, one commonly learns useful things.  相似文献   

5.

Background and aims

Root length density (RLD) is a parameter that is difficult to measure, but crucial to estimate water and nutrient uptake by plants. In this study a novel approach is presented to characterize the 3-D root length distribution by supplementing data of the 3-D distribution of root intersections with data of root length density from a limited number of soil cores.

Methods

The method was evaluated in a virtual experiment using the RootTyp model and a field experiment with cauliflower (Brassica oleracea L. botrytis) and leek (Allium porrum, L.).

Results

The virtual experiment shows that total root length and root length distribution can be accurately estimated using the novel approach. Implementation of the method in a field experiment was successful for characterizing the growth of the root distribution with time both for cauliflower and leek. In contrast with the virtual experiment, total root length could not be estimated based upon root intersection measurements in the field.

Conclusions

The novel method of combining root intersection data with root length density data from core samples is a powerful tool to supply root water uptake models with root system information.  相似文献   

6.

Aims

Plant species and functional groups are known to drive the community of belowground invertebrates but whether their effects are consistent across environmental gradients is less well understood. We aimed to determine if plant effects on belowground communities are consistent across a successional gradient in boreal forests of northern Sweden.

Methods

We performed two plant removal experiments across ten stands that form a 364-year post-fire boreal forest chronosequence. Through the removal of plant functional groups (mosses or dwarf shrubs) and of individual species of dwarf shrubs, we aimed to determine if the effects of functional groups and species on the soil micro-arthropod community composition varied across this chronosequence.

Results

Removal of mosses had a strong negative impact on the abundance and diversity of Collembola and Acari and this effect was consistent across the chronosequence. Only specific Oribatid families declined following dwarf-shrub species removals, with some of these responses being limited to old forest stands.

Conclusions

Our results show that the impacts of plants on micro-arthropods is consistent across sites that vary considerably in their stage of post-fire ecosystem development, despite these stages differing greatly in plant productivity, fertility, humus accumulation and moss development. In addition, mosses are a much stronger driver of the micro-arthropod community than vascular plants.  相似文献   

7.

Aims

Estimates of root absorption magnitude are needed for the balanced management of forest ecosystems, but no methods able to work on the whole tree and stand level were available. Modified earth impedance method was developed recently and here it was tested, by comparing the results with those obtained by combination of several classical methods.

Methods

We used direct (soil cores, scanning and microscopy) and indirect (sap flow patterns and modified earth impedance) methods in an attempt to estimate the absorptive root area indexes (RAI) at two sites of about 25 and 40-years-old Norway spruce. We considered the geometric surfaces of all scanned fine roots to be equal to the fine root absorptive area (RAI scan ). To estimate the potentially physically permeable area of fine roots, we microscopically evaluated the point of secondary xylem appearance and calculated the geometric area of root portions with primary structure (RAI micro ). We termed the area of electrically conductive root surface as the active (ion) absorptive area (RAI mei ) and measured its extent by the modified earth impedance (MEI) method.

Results

The highest values for absorptive root areas at the two experimental sites we obtained with the scanning method (RAI scan was considered to be 100%), followed by the RAI micro (51%) and RAI mei (32%). RAImei reached about 2/3 of RAImicro. The surface area of the ectomycorrhizal hyphae was an order of magnitude larger than that of all fine roots, but the MEI did not measure such increase.

Conclusions

We showed that the absorptive root area, indirectly estimated by the MEI, provides consistent results that approach the values obtained for fine roots with a primary structure estimated by traditional direct methods. The similar range of the values for the absorptive root surface area obtained by microscopy and by the MEI method indicates that this method is feasible and that it could be used to determine the extent of active absorptive root surface areas in forests.  相似文献   

8.

Background

Genome sequences can be conceptualized as arrangements of motifs or words. The frequencies and positional distributions of these words within particular non-coding genomic segments provide important insights into how the words function in processes such as mRNA stability and regulation of gene expression.

Results

Using an enumerative word discovery approach, we investigated the frequencies and positional distributions of all 65,536 different 8-letter words in the genome of Arabidopsis thaliana. Focusing on promoter regions, introns, and 3' and 5' untranslated regions (3'UTRs and 5'UTRs), we compared word frequencies in these segments to genome-wide frequencies. The statistically interesting words in each segment were clustered with similar words to generate motif logos. We investigated whether words were clustered at particular locations or were distributed randomly within each genomic segment, and we classified the words using gene expression information from public repositories. Finally, we investigated whether particular sets of words appeared together more frequently than others.

Conclusion

Our studies provide a detailed view of the word composition of several segments of the non-coding portion of the Arabidopsis genome. Each segment contains a unique word-based signature. The respective signatures consist of the sets of enriched words, 'unwords', and word pairs within a segment, as well as the preferential locations and functional classifications for the signature words. Additionally, the positional distributions of enriched words within the segments highlight possible functional elements, and the co-associations of words in promoter regions likely represent the formation of higher order regulatory modules. This work is an important step toward fully cataloguing the functional elements of the Arabidopsis genome.  相似文献   

9.

Objectives

To identify parameters that can be used for the analysis of natural variation in leaf senescence of wheat; and to understand the association between the onset and progression of leaf senescence with N uptake and root traits.

Methods

Chlorophyll content and the proportion of yellow leaves were used as senescence indicators and their relation with other morphological and physiological traits were measured in contrasting early senescing (ES) and late senescing (LS) wheat lines.

Results

There were significant genotype effects on the onset and progress of senescence. The ES lines in which leaf senescence commenced early had significantly lower root biomass and N uptake than LS lines. The strong negative association between the extent of leaf senescence with root biomass and N uptake indicated that the poor root growth induced N limitation caused the early senescence of ES lines.

Conclusions

The leaf senescence development in ES lines was precocious and constitutive as the trait expressed even under optimal growth conditions suggesting they could be useful in understanding the genetic regulation of senescence under different abiotic stress situations. Accelerated leaf senescence in wheat could be a mechanism to compensate for limitations in the root system that tend to restrict nutrient uptake.  相似文献   

10.
Morphogen gradients play a key role in multiple differentiation processes. Both the formation of the gradient and its interpretation by the receiving cells need to occur at high precision to ensure reproducible patterning. This need for quantitative precision is challenged by fluctuations in the environmental conditions and by variations in the genetic makeup of the developing embryos. We discuss mechanisms that buffer morphogen profiles against variations in gene dosage. Self-enhanced morphogen degradation and pre-steady-state decoding provide general means for buffering the morphogen profile against fluctuations in morphogen production rate. A more specific “shuttling” mechanism, which establishes a sharp and robust activation profile of a widely expressed morphogen, and enables the adjustment of morphogen profile with embryo size, is also described. Finally, we consider the transformation of the smooth gradient profile into sharp borders of gene expression in the signal-receiving cells. The integration theory and experiments are increasingly used, providing key insights into the system-level functioning of the developmental system.In order for a uniform field of cells to differentiate into a reproducible pattern of organs and tissues, cells need to receive information about their position within the field. During development, positional information is often conveyed by spatial gradients of morphogens (Wolpert 1989). In the presence of such gradients, cells are subject to different levels of morphogen, depending on their positions within the field, and activate, accordingly, one of several gene expression cassettes. The quantitative shape of the morphogen gradient is critical for patterning, with cell-fate boundaries established at specific concentration thresholds. Although these general features of morphogen-based patterning are universal, the range and form of the morphogen profile, and the pattern of induced target genes, vary significantly depending on the tissue setting and the signaling pathways used.The formation of a morphogen gradient is a dynamic process, influenced by the kinetics of morphogen production, diffusion, and degradation. These processes are tightly controlled through intricate networks of positive and negative feedback loops, which shape the gradient and enhance its reproducibility between individual embryos and developmental contexts. In the past three decades, many of the components comprising the morphogen signaling cascades have been identified and sorted into pathways, enabling one to start addressing seminal questions regarding their functionality: How is it that morphogen signaling is reproducible from one embryo to the next, despite fluctuations in the levels of signaling components, temperature differences, variations in size, or unequal distribution of components between daughter cells? Are there underlying mechanisms that assure a reproducible response? Are these mechanisms conserved across species, similar to the signaling pathways they control?In this review, we outline insights we gained by quantitatively analyzing the process of morphogen gradient formation. We focus on mechanisms that buffer morphogen profiles against fluctuations in gene dosage, and describe general means by which such buffering is enhanced. These mechanisms include self-enhanced morphogen degradation and pre-steady-state decoding. In addition, we describe a more specific “shuttling” mechanism that is used to generate a sharp and robust profile of a morphogen activity from a source that is broadly produced. We discuss the implication of the shuttling mechanism for the ability of embryos to adjust their pattern with size. Finally, we consider the transformation of the smooth gradient profile into sharp borders of gene expression in the signal-receiving cells.  相似文献   

11.

Background and aims

Water availability is often one of the most limiting factors for plants. Climate change predictions for many areas suggest an intensification of water limitation. The ability of a plant to modify its root characteristics can be an important mechanism for preventing drought stress.

Methods

We studied the drought response of seedlings of 10 woody species and compared the biomass allocation, vertical root distribution across different root diameters, and the key traits of very fine roots (root diameter <0.5 mm) under two water regimes (no water limitation and severe drought).

Results

Under drought conditions, the very fine roots had a higher specific root length (SRL, root length: biomass ratio), smaller root diameter and higher root tissue mass density, as well as a lower nitrogen concentration. A higher value of the mean root plasticity index was related to higher drought resistance. A quantitative literature review showed that there was a wide variation in the effect of the drought on SRL, thus there was not a clear effect of drought on SRL.

Conclusions

Certain species have the necessary root traits and plasticity to survive drought. We have identified plasticity in root characteristics as a whole-plant trait which plays a significant role in separating out species into those which are vulnerable and those which are resistant to drought.  相似文献   

12.
How morphogen gradients are formed in target tissues is a key question for understanding the mechanisms of morphological patterning. Here, we review different mechanisms of morphogen gradient formation from theoretical and experimental points of view. First, a simple, comprehensive overview of the underlying biophysical principles of several mechanisms of gradient formation is provided. We then discuss the advantages and limitations of different experimental approaches to gradient formation analysis.How a multicellular organism develops from a single fertilized cell has fascinated people throughout history. By looking at chick embryos of different developmental stages, Aristotle first noted that development is characterized by growing complexity and organization of the embryo (Balme 2002). During the 19th century, two events were recognized as key in development: cell proliferation and differentiation. Driesch first noted that to form organisms with correct morphological pattern and size, these processes must be controlled at the level of the whole organism. When he separated two sea urchin blastomeres, they produced two half-sized blastula, showing that cells are potentially independent, but function together to form a whole organism (Driesch 1891, 1908). Morgan noted the polarity of organisms and that regeneration in worms occurs with different rates at different positions. This led him to postulate that regeneration phenomena are influenced by gradients of “formative substances” (Morgan 1901).The idea that organisms are patterned by gradients of form-providing substances was explored by Boveri and Hörstadius to explain the patterning of the sea urchin embryo (Boveri 1901; Hörstadius 1935). The discovery of the Spemann organizer, i.e., a group of dorsal cells that when grafted onto the opposite ventral pole of a host gastrula induce a secondary body axis (Spemann and Mangold 1924), suggested that morphogenesis results from the action of signals that are released from localized groups of cells (“organizing centers”) to induce the differentiation of the cells around them (De Robertis 2006). Child proposed that these patterning “signals” represent metabolic gradients (Child 1941), but the mechanisms of their formation, regulation, and translation into pattern remained elusive.In 1952, Turing showed that chemical substances, which he called morphogens (to convey the idea of “form producers”), could self-organize into spatial patterns, starting from homogenous distributions (Turing 1952). Turing’s reaction–diffusion model shows that two or more morphogens with slightly different diffusion properties that react by auto- and cross-catalyzing or inhibiting their production, can generate spatial patterns of morphogen concentration. The reaction–diffusion formalism was used to model regeneration in hydra (Turing 1952), pigmentation of fish (Kondo and Asai 1995; Kondo 2002), and snails (Meinhardt 2003).At the same time that Turing showed that pattern can self-organize from the production, diffusion, and reaction of morphogens in all cells, the idea that morphogens are released from localized sources (“organizers” à la Spemann) and form concentration gradients was still explored. This idea was formalized by Wolpert with the French flag model for generation of positional information (Wolpert 1969). According to this model, morphogen is secreted from a group of source cells and forms a gradient of concentration in the target tissue. Different target genes are expressed above distinct concentration thresholds, i.e., at different distances to the source, hence generating a spatial pattern of gene expression (Fig. 1C).Open in a separate windowFigure 1.Tissue geometry and simplifications. (A) Gradients in epithelia (left) and mesenchymal tissues (right). Because of symmetry considerations, one row of cells (red outline) is representative for the whole gradient. (B) Magnified view of the red row of cells shown in A. Cells with differently colored nuclei (brown, orange, and blue) express different target genes. (C) A continuum model in which individual cells are ignored and the concentration is a function of the positions x. The morphogen activates different target genes above different concentration thresholds (brown and orange).Experiments in the 1970s and later confirmed that tissues are patterned by morphogen gradients. Sander showed that a morphogen released from the posterior cytoplasm specifies anterioposterior position in the insect egg (Sander 1976). Chick wing bud development was explained by a morphogen gradient emanating from the zone of polarizing activity to specify digit positions (Saunders 1972; Tickle, et al. 1975; Tickle 1999). The most definitive example of a morphogen was provided with the identification of Bicoid function in the Drosophila embryo (Nüsslein-Volhard and Wieschaus 1980; Frohnhöfer and Nüsslein-Volhard 1986; Nüsslein-Volhard et al. 1987) and the visualization of its gradient by antibody staining (Driever and Nüsslein-Volhard 1988b, 1988a; reviewed in Ephrussi and St Johnston 2004). Since then, many examples of morphogen gradients acting in different organs and species have been found.In an attempt to understand pattern formation in more depth, quantitative models of gradient formation have been developed. An early model by Crick shows that freely diffusing morphogen produced in a source cell and destroyed in a “sink” cell at a distance would produce a linear gradient in developmentally relevant timescales (Crick 1970). Today, it is known that a localized “sink” is not necessary for gradient formation: Gradients can form if all cells act as sinks and degrade morphogen, or even if morphogen is not degraded at all. Here, we review different mechanisms of gradient formation, the properties of these gradients, and the implications for patterning. We discuss the theory behind these mechanisms and the supporting experimental data.  相似文献   

13.

Aims

The mechanisms of belowground competition are not well understood. Addressing literature reports on competition-induced changes in tree fine root morphology, we conducted a growth experiment with tree saplings to investigate competition effects on important root morphological and functional traits in a root order-focused analysis.

Methods

European beech and European ash saplings were grown for 34 months in containers under greenhouse conditions in monoculture (2 conspecific plants), in mixture (1 beech and 1 ash) or as single plants. The root system was fractionated according to root orders and eight morphological and functional properties were determined.

Results

Root order was the most influential factor affecting the fine root traits (except for root diameter and δ13C); a significant species identity effect was found for root diameter, tissue density, N concentration and δ13C. Ash fine roots were thicker, but had lower tissue densities, contained more N and had systematically higher δ13C values than beech roots. The competition treatments had no significant effect on morphological root traits but altered δ13C in the 2nd root order.

Conclusion

Neither intra- nor interspecific root competition affected fine root morphology significantly suggesting that competition-induced root modification may not be a universal phenomenon in temperate trees.  相似文献   

14.

Aims

Inter-specific comparisons of plant traits may vary depending on intra-specific variation. Here we examine the impact of root branching order and season on key functional root traits for grass species. We also compare root traits among co-existing grass species as a step towards defining root trait syndromes.

Methods

Monocultures of 13 grass species, grown under field conditions and subjected to intensive management, were used to record root trait values for coarse roots (1st order, >0.3?mm), fine roots (2nd and 3rd orders, <0.2?mm) and mixed root samples over three growing seasons.

Results

Branching order and species had a significant effect on root trait values, whereas season showed a marginal effect. The diameter of coarse roots was more variable than that of fine roots and, as expected, coarse roots had higher tissue density and lower specific root length values than fine roots. Principal component analysis run on eight root traits provided evidence for two trait syndromes related to resource acquisition and conservation strategies across grass species.

Conclusions

Our data show that root branching order is the main determinant of root trait variation among species. This highlights the necessity to include the proportion of fine vs coarse roots when measuring traits of mixed root samples.  相似文献   

15.
16.
During development, secreted morphogens such as Wnt, Hedgehog (Hh), and BMP emit from their producing cells in a morphogenetic field, and specify different cell fates in a direct concentration-dependent manner. Understanding how morphogens form their concentration gradients to pattern tissues has been a central issue in developmental biology. Various experimental studies from Drosophila have led to several models to explain the formation of morphogen gradients. Over the past decade, one of the main findings in this field is the characterization of heparan sulfate proteoglycan (HSPG) as an essential regulator for morphogen gradient formation. Genetic and cell biological studies have showed that HSPGs can regulate morphogen activities at various steps including control of morphogen movement, signaling, and intracellular trafficking. Here, we review these data, highlighting recent findings that reveal mechanistic roles of HSPGs in controlling morphogen gradient formation.Embryonic development involves many spatial and temporal patterns of cell and tissue organization. These patterning processes are controlled by gradients of morphogens, the “form-generating substances” (Tabata and Takei 2004; Lander 2007). Secreted morphogen molecules, including members of Wnt, Hedgehog (Hh), and transforming growth factor-β (TGF-β) families, are generated from organizing centers and form concentration gradients to specify distinct cell fates in a concentration-dependent manner. Understanding how morphogen gradients are established during development has been a central question in developmental biology. Over the past decade, studies in both Drosophila and vertebrates have yielded important insights in this field. One of the important findings is the characterization of heparan sulfate proteoglycan (HSPG) as an essential regulator for morphogen gradient formation. In this review, we first discuss various models for morphogen movement. Then, we focus on the functions of HSPGs in morphogen movement, signaling, and trafficking.  相似文献   

17.

Aim

A mechanism of action for the performance of Fe chelates as soil-applied fertilizer has been hypothesized by Lindsay and Schwab (J Plant Nutr 5:821–840, 1982), in which the ligand participates in a cyclic process of delivering Fe at the root surface and mobilizing Fe from the soil. This “shuttle mechanism” seems appealing in view of fertilizer efficiency, but little is known about its performance. The chelate FeEDDHA is a commonly used Fe fertilizer on calcareous soils.

Methods

In this study, the performance of the shuttle mechanism has been examined for FeEDDHA chelates in soil interaction and pot trial experiments.

Results

The specificity of EDDHA ligands for chelating Fe from soils of low Fe availability is limited. Experimental support for a shuttle mechanism in soil-plant systems with FeEDDHA was found: specific metal mobilization only occurred upon FeEDDHA-facilitated Fe uptake. The mobilized metals originated at least in part from the root surface instead of the soil.

Conclusion

The results from this study support the existence of a shuttle mechanism with FeEDDHA in soil application. If the efficiency of the shuttle mechanism is however largely controlled by metal availability in the bulk soil, it is heavily compromised by complexation of competing cations: Al, Mn and particularly Cu.  相似文献   

18.

Background

Microfluidics is an enabling technology with a number of advantages over traditional tissue culture methods when precise control of cellular microenvironment is required. However, there are a number of practical and technical limitations that impede wider implementation in routine biomedical research. Specialized equipment and protocols required for fabrication and setting up microfluidic experiments present hurdles for routine use by most biology laboratories.

Results

We have developed and validated a novel microfluidic device that can directly interface with conventional tissue culture methods to generate and maintain controlled soluble environments in a Petri dish. It incorporates separate sets of fluidic channels and vacuum networks on a single device that allows reversible application of microfluidic gradients onto wet cell culture surfaces. Stable, precise concentration gradients of soluble factors were generated using simple microfluidic channels that were attached to a perfusion system. We successfully demonstrated real-time optical live/dead cell imaging of neural stem cells exposed to a hydrogen peroxide gradient and chemotaxis of metastatic breast cancer cells in a growth factor gradient.

Conclusion

This paper describes the design and application of a versatile microfluidic device that can directly interface with conventional cell culture methods. This platform provides a simple yet versatile tool for incorporating the advantages of a microfluidic approach to biological assays without changing established tissue culture protocols.  相似文献   

19.

Background  

One way in which positional information is established during embryonic development is through the graded distribution of diffusible morphogens. Unfortunately, little is known about how cells interpret different concentrations of morphogen to activate different genes or how thresholds are generated in a morphogen gradient.  相似文献   

20.

Background and aims

Soil aggregate stability depends on plant community properties, such as functional group composition, diversity and biomass production. However, little is known about the relative importance of these drivers and the role of soil organisms in mediating plant community effects.

Methods

We studied soil aggregate stability in an experimental grassland plant diversity gradient and considered several explanatory variables to mechanistically explain effects of plant diversity and plant functional group composition. Three soil aggregate stability measures (slaking, mechanical breakdown and microcracking) were considered in path analyses.

Results

Soil aggregate stability increased significantly from monocultures to plant species mixtures and in the presence of grasses, while it decreased in the presence of legumes, though effects differed somewhat between soil aggregate stability measures. Using path analysis plant community effects could be explained by variations in root biomass, soil microbial biomass, soil organic carbon concentrations (all positive relationships), and earthworm biomass (negative relationship with mechanical breakdown).

Conclusions

The present study identified important drivers of plant community effects on soil aggregate stability. The effects of root biomass, soil microbial biomass, and soil organic carbon concentrations were largely consistent across plant diversity levels suggesting that the mechanisms identified are of general relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号