首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human airway smooth muscle (HASM) cells are a rich source of inflammatory mediators that may propagate the airway inflammatory responses. Recent studies from our laboratory and others demonstrate that HASM cells express the proallergic cytokine thymic stromal lymphopoietin (TSLP) in vitro and in vivo. Compelling evidence from in vitro studies and animal models suggest that the TSLP is a critical factor sufficient and necessary to induce or maintain the allergic airway inflammation. Despite of an immense interest in pathophysiology of TSLP in allergic inflammation, the triggers and mechanisms of TSLP expression remain inadequately understood. In this study, we found that TNF-α upregulates the TSLP mRNA and induces high levels of TSLP protein release in primary human ASM cells. Interestingly, TNF-α induced the TSLP promoter activity (P < 0.05; n = 4) in HASM that was mediated by upstream NF-κB and activator protein-1 (AP-1) binding sites. Mutation in NF-κB and AP-1 binding sites completely abrogated the effect of TNF-α-mediated TSLP promoter activity and so did the expression of a dominant-negative mutant construct of IκB kinase. Furthermore, the peptide inhibitors of IκB kinase or NF-κB inhibited the TNF-α-induced TSLP protein release (P < 0.05; n = 3) in HASM. Collectively, our data suggest a novel important biological role for NF-κB pathway in TNF-α-induced TSLP expression in HASM and recommend this as a prime target for anti-inflammatory drugs.  相似文献   

3.
《Cytokine》2015,73(2):220-223
Leucine-rich glioma inactivated 3 (LGI3) is a secreted protein member of LGI family. We previously reported that LGI3 increased in obese adipose tissues and suppressed adipogenesis through its receptor, ADAM23. We proposed that LGI3 may be a pro-inflammatory adipokine secreted predominantly by preadipocytes and macrophages. In this study, we showed that LGI3 and tumor necrosis factor-α (TNF-α) upregulated each other in 3T3-L1 cells. Treatment of 3T3-L1 preadipocytes with LGI3 protein increased TNF-α mRNA and protein. LGI3 treatment led to NF-κB activation and binding to an NF-κB binding site (−523 to −514) in TNF-α promoter. TNF-α treatment increased mRNA and protein expression of LGI3 and ADAM23. TNF-α increased NF-κB binding to a predicted binding site (−40 to −31) in LGI3 promoter. High fat diet-fed mice showed that LGI3 and TNF-α were increased and colocalized in adipose tissue inflammation. Taken together, these results suggested that mutual upregulation of LGI3 and TNF-α may play a role in adipose tissue inflammation in obesity.  相似文献   

4.
5.
6.
Plasminogen activator inhibitor (PAI)-1 is a major fibrinolytic inhibitor. High PAI-1 is associated with increased renal and cardiovascular disease risk. Previous studies demonstrated PAI-1 down-regulation by 1,25-dihydroxyvitamin D? (1,25(OH)?D?), but the molecular mechanism remains unknown. Here we show that exposure of mouse embryonic fibroblasts to TNFα or LPS led to a marked induction of PAI-1, which was blunted by 1,25(OH)?D?, NF-κB inhibitor or p65 siRNA, suggesting the involvement of NF-κB in 1,25(OH)?D?-induced repression. In mouse Pai-1 promoter a putative cis-κB element was identified at -299. EMSA and ChIP assays showed that TNF-α increased p50/p65 binding to this κB site, which was disrupted by 1,25(OH)?D?. Luciferase reporter assays showed that PAI-1 promoter activity was induced by TNFα or LPS, and the induction was blocked by 1,25(OH)?D?. Mutation of the κB site blunted TNFα, LPS or 1,25(OH)?D? effects. 1,25(OH)?D? blocked IκBα degradation and arrested p50/p65 nuclear translocation. In mice LPS stimulated PAI-1 expression in the heart and macrophages, and the stimulation was blunted by pre-treatment with a vitamin D analog. Together these data demonstrate that 1,25(OH)?D? down-regulates PAI-1 by blocking NF-κB activation. Inhibition of PAI-1 production may contribute to the reno- and cardio-protective effects of vitamin D.  相似文献   

7.
8.
目的:研究肿瘤坏死因子-α(Tumor necrosis factor-α,TNF-α)刺激大鼠骨髓间充质干细胞(marrow-derived mesenchymalstem cells,MSCs)的作用机制。方法:采取大鼠骨髓,以密度梯度离心分离出单个核细胞(MNCs),于体外培养并由牛垂体提取物(PEX)诱导扩增传代培养出骨髓间充质干细胞(MSCs)。经形态学和流式细胞仪检测MSCs表面标志物鉴定后,用TNF-α刺激骨髓间充质干细胞(MSCs),通过酶联免疫吸附剂测定法(enzyme linked immunosorbent assay,ELISA)观察比较不同组别细胞的生长因子分泌和蛋白印迹法(western blot)来观察细胞中蛋白的变化。结果:①经形态学观察和流式细胞仪检测MSCs表面标志物鉴定,提示骨髓间充质干细胞的培养成功。②无TNF-α刺激组与TNF-α刺激组比较,TNF-α刺激组的生长因子分泌显著性增加,而通过磷酸化IκB的表达量显著性增加提示NF-κB被激活(P〈0.05);同时TNF-α刺激组与TNF-α+NF-κB抑制剂组比较,TNF-α+NF-κB抑制剂组的生长因子分泌显著降低,而通过磷酸化IκB的表达量显著减少提示NF-κB的活性被抑制(P〈0.05)。结论:NF-κB对TNF-α刺激下的骨髓间充质干细胞分泌生长因子有关键性作用。  相似文献   

9.
10.
11.
12.
13.
Lentinan, a cell wall β-glucan from the fruiting bodies of Lentinus edodes, is well known to be a biological defense modifier, but the signal transduction pathway(s) induced by Lentinan have not been elucidated. In this study, we extracted Lentinan (LNT-S) by ultrasonication from Lentinus edodes and report that, in murine RAW 264.7 macrophages, LNT-S glucan activated NF-κB p65 and triggered its nuclear translocation as determined by Western blotting. Moreover, LNT-S enhanced NF-κB-luciferase activity in the Dual-Luciferase gene system assay. Its upstream signaling molecules, MAPKs such as ERK1/2 and JNK1/2, were shown to be activated by assessing the level of phosphorylation in a time- and concentration-dependent manner, but its downstream proinflammatory enzyme, inducible NOS, was not observed. The data evaluated using a TNF-α ELISA kit and Griess reagent further demonstrated that no proinflammatory mediators such as TNF-α and NO were produced by LNT-S stimulation in RAW 264.7 cells. In contrast, LPS significantly induced inducible NOS expression and increased NO and TNF-α production, which are associated with activation of the NF-κB p65/p50 heterodimer complex. It is possible that LNT-S did not activate NF-κB p65/p50, and the activation of NF-κB p65 was not sufficient to stimulate cytokine production. These data demonstrate that LNT-S glucan carries out its immunomodulating activity by activating MAPK signaling pathways without secretion of TNF-α and NO.  相似文献   

14.
15.
16.
17.
目的探讨内毒素(LPS)刺激大鼠肠黏膜微血管内皮细胞(RIMMVECs)后,乳酸(LA)调控NF-κB信号通路中磷酸化IκBα和NF-κB p65蛋白表达情况,肿瘤坏死因子α(TNF-α)和白细胞介素6(IL-6)mRNA表达情况,阐明乳酸发挥作用的最佳时间及其调控NF-κB信号通路的部位。方法提取RIMMVECs总蛋白和总RNA,用Western blotting检测NF-κB p65、IκBα及p-IκBα蛋白表达水平,用real-time PCR对TNF-α和IL-6 mRNA进行定量检测。结果乳酸能降低LPS诱导RIMMVECs分泌的TNF-α和IL-6 mRNA表达水平,并分别于24 h和3 h下调效果最明显;乳酸能抑制IκBα磷酸化及NF-κB转录活性,并于4~8 h达到最佳效果;乳酸发挥作用部位是抑制信号通路中IκBα磷酸化。结论乳酸通过抑制IκBα磷酸化而阻断NF-κB的激活,抑制下游炎性因子表达,进而发挥出很好的预防炎症效果。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号