首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress.

Methods and Findings

We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genome-wide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs) associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67–79% and 56–66% of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis.

Conclusions

We identified novel candidate genes associated with variation in resistance to oxidative stress that have context-dependent effects. These results form the basis for future translational studies to identify oxidative stress susceptibility/resistance genes that are evolutionary conserved and might play a role in human disease.  相似文献   

3.
Mycobacterium tuberculosis infection continues to cause substantial human suffering. New chemotherapeutic strategies, which require insight into the pathways essential for M. tuberculosis pathogenesis, are imperative. We previously reported that depletion of the CarD protein in mycobacteria compromises viability, resistance to oxidative stress and fluoroquinolones, and pathogenesis. CarD associates with the RNA polymerase (RNAP), but it has been unknown which of the diverse functions of CarD are mediated through the RNAP; this question must be answered to understand the CarD mechanism of action. Herein, we describe the interaction between the M. tuberculosis CarD and the RNAP β subunit and identify point mutations that weaken this interaction. The characterization of mycobacterial strains with attenuated CarD/RNAP β interactions demonstrates that the CarD/RNAP β association is required for viability and resistance to oxidative stress but not for fluoroquinolone resistance. Weakening the CarD/RNAP β interaction also increases the sensitivity of mycobacteria to rifampin and streptomycin. Surprisingly, depletion of the CarD protein did not affect sensitivity to rifampin. These findings define the CarD/RNAP interaction as a new target for chemotherapeutic intervention that could also improve the efficacy of rifampin treatment of tuberculosis. In addition, our data demonstrate that weakening the CarD/RNAP β interaction does not completely phenocopy the depletion of CarD and support the existence of functions for CarD independent of direct RNAP binding.  相似文献   

4.

Background

Low temperature plasmas have been proposed in medicine as agents for tissue disinfection and have received increasing attention due to the frequency of bacterial resistance to antibiotics. This study explored whether atmospheric-pressure cold plasma (APCP) generated by a new portable device that ionizes a flow of helium gas can inactivate ocular pathogens without causing significant tissue damage.

Methodology/Principal Findings

We tested the APCP effects on cultured Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus fumigatus and Herpes simplex virus-1, ocular cells (conjunctival fibroblasts and keratocytes) and ex-vivo corneas. Exposure to APCP for 0.5 to 5 minutes significantly reduced microbial viability (colony-forming units) but not human cell viability (MTT assay, FACS and Tunel analysis) or the number of HSV-1 plaque-forming units. Increased levels of intracellular reactive oxygen species (ROS) in exposed microorganisms and cells were found using a FACS-activated 2′,7′-dichlorofluorescein diacetate probe. Immunoassays demonstrated no induction of thymine dimers in cell cultures and corneal tissues. A transient increased expression of 8-OHdG, genes and proteins related to oxidative stress (OGG1, GPX, NFE2L2), was determined in ocular cells and corneas by HPLC, qRT-PCR and Western blot analysis.

Conclusions

A short application of APCP appears to be an efficient and rapid ocular disinfectant for bacteria and fungi without significant damage on ocular cells and tissues, although the treatment of conjunctival fibroblasts and keratocytes caused a time-restricted generation of intracellular ROS and oxidative stress-related responses.  相似文献   

5.
We report a functional type I toxin-antitoxin (TA) module expressed by a human pathogen, Staphylococcus aureus. TA systems consist of stable toxins and labile antitoxins encoded within small genetic modules widespread in eubacteria and archaea. TA genes provide stress adaptation and protection against DNA loss or invasion. The genes encoding the SprA1 toxic peptide (PepA1) and the SprA1AS RNA antitoxin are within a pathogenicity island on opposite strands and possess a 3′ overlap. To prevent peptide toxicity during S. aureus growth, PepA1 expression from stable (half-life > 3 h) SprA1 is repressed by elevated amounts of unstable (half-life = ∼10 mn) SprA1AS. In vivo, PepA1 localizes at the bacterial membrane and triggers S. aureus death. Based on NMR and CD data, its solution structure was solved and is a long bent, interrupted helix. Molecular dynamics simulations indicate that PepA1 compaction and helical content fluctuate in accordance with its cytoplasm or membrane location. When inserted into the S. aureus membrane, the PepA1 conformation switches to a ∼7-nm-long continuous helix, presumably forming pores to alter membrane integrity. PepA1 expression is induced upon acidic and oxidative stresses by reducing SprA1AS levels. As an altruistic behavior during infection, some cells may induce the expression of that toxin that would facilitate departure from the host immune cells for spreading.  相似文献   

6.
《Genomics》2020,112(2):1371-1383
The two-component system (TCS) plays an important role in signal transduction pathways, cytokinin signaling and stress resistance of prokaryotes and eukaryotes. It is comprised of three types of proteins in plants; histidine kinases (HKs), histidine phosphotransfer proteins (HPs) and response regulators (RRs). Chickpea (Cicer arietinum L.) is one of the most important legume crops worldwide with special economic value in semi-arid tropics. Availability of complete genome sequence of chickpea presents a valuable resource for comparative analysis among angiosperms. In current study, Arabidopsis thaliana and Oryza sativa were used as reference plant species for comparative genomics analysis with C. arietinum. A genome-wide computational survey enabled us to identify putative members of TCS protein family including 18HKs, 26 RRs (7 type-A, 7 type-B, 2 type C and 10 pseudo) and 7 HPs (5 true and 2pseudo) genes in chickpea. The predicted TCS genes displayed family specific intron/exon organization and were randomly distributed across all the eight chromosomes. Comparative phylogenetic and evolutionary analysis suggested a variable conservation of TCS genes in relation to mono/dicot model plants and segmental duplication was the principal route of expansion for this family in chickpea. The promoter regions of TCS genes exhibited several abiotic stress-related cis-elements indicating their involvement in abiotic stress response. The expression analysis of TCS genes demonstrated stress (drought, heat, osmotic and salt) specific differential expression. Current study provides insight into TCS genes in C. arietinum, which will be helpful for further functional analysis of these genes in response to different abiotic stresses.  相似文献   

7.
Staphylococcus aureus USA300, the clonal type associated with epidemic community-acquired methicillin-resistant S. aureus (MRSA) infections, displays the giant protein Ebh on its surface. Mutations that disrupt the ebh reading frame increase the volume of staphylococcal cells and alter the cross wall, a membrane-enclosed peptidoglycan synthesis and assembly compartment. S. aureus ebh variants display increased sensitivity to oxacillin (methicillin) as well as susceptibility to complement-mediated killing. Mutations in ebh are associated with reduced survival of mutant staphylococci in blood and diminished virulence in mice. We propose that Ebh, following its secretion into the cross wall, contributes to the characteristic cell growth and envelope assembly pathways of S. aureus, thereby enabling complement resistance and the pathogenesis of staphylococcal infections.  相似文献   

8.
Wall teichoic acids are anionic phosphate-rich polymers that are part of the complex meshwork of carbohydrates that make up the gram-positive cell wall. These polymers are essential to the proper rod-shaped morphology of Bacillus subtilis and have been shown to be an important virulence determinant in the nosocomial opportunistic pathogen Staphylococcus aureus. Together, sequence-based studies, in vitro experiments with biosynthetic proteins, and analyses of the chemical structure of wall teichoic acid have begun to shed considerable light on our understanding of the biogenesis of this polymer. Nevertheless, some paradoxes remain unresolved. One of these involves a putative duplication of genes linked to CDP-ribitol synthesis (tarIJ′ and tarIJ) as well as poly(ribitol phosphate) polymerization (tarK and tarL) in S. aureus. In the work reported here, we performed careful studies of the dispensability of each gene and discovered a functional redundancy in the duplicated gene clusters. We were able to create mutants in either of the putative ribitol phosphate polymerases (encoded by tarK and tarL) without affecting teichoic acid levels in the S. aureus cell wall. Although genes linked to CDP-ribitol synthesis are also duplicated, a null mutant in only one of these (tarIJ′) could be obtained, while tarIJ remained essential. Suppression analysis of the tarIJ null mutant indicated that the mechanism of dysfunction in tarIJ′ is due to poor translation of the TarJ′ enzyme, which catalyzes the rate-limiting step in CDP-ribitol formation. This work provides new insights into understanding the complex synthetic steps of the ribitol phosphate polymer in S. aureus and has implications on specifically targeting enzymes involved in polymer biosynthesis for antimicrobial design.  相似文献   

9.
The two-component system (TCS) KdpD/KdpE, extensively studied for its regulatory role in potassium (K+) transport, has more recently been identified as an adaptive regulator involved in the virulence and intracellular survival of pathogenic bacteria, including Staphylococcus aureus, entero-haemorrhagic Escherichia coli, Salmonella typhimurium, Yersinia pestis, Francisella species, Photorhabdus asymbiotica, and mycobacteria. Key homeostasis requirements monitored by KdpD/KdpE and other TCSs such as PhoP/PhoQ are critical to survival in the stressful conditions encountered by pathogens during host interactions. It follows these TCSs may therefore acquire adaptive roles in response to selective pressures associated with adopting a pathogenic lifestyle. Given the central role of K+ in virulence, we propose that KdpD/KdpE, as a regulator of a high-affinity K+ pump, has evolved virulence-related regulatory functions. In support of this hypothesis, we review the role of KdpD/KdpE in bacterial infection and summarize evidence that (i) KdpD/KdpE production is correlated with enhanced virulence and survival, (ii) KdpE regulates a range of virulence loci through direct promoter binding, and (iii) KdpD/KdpE regulation responds to virulence-related conditions including phagocytosis, exposure to microbicides, quorum sensing signals, and host hormones. Furthermore, antimicrobial stress, osmotic stress, and oxidative stress are associated with KdpD/KdpE activity, and the system''s accessory components (which allow TCS fine-tuning or crosstalk) provide links to stress response pathways. KdpD/KdpE therefore appears to be an important adaptive TCS employed during host infection, promoting bacterial virulence and survival through mechanisms both related to and distinct from its conserved role in K+ regulation.  相似文献   

10.
11.
12.
13.
14.
Lysozyme is an important and widespread component of the innate immune response that constitutes the first line of defense against bacterial pathogens. The bactericidal effect of this enzyme relies on its capacity to hydrolyze the bacterial cell wall and also on a nonenzymatic mechanism involving its cationic antimicrobial peptide (CAMP) properties, which leads to membrane permeabilization. In this paper, we report our findings on the lysozyme resistance ability of Rhodococcus equi, a pulmonary pathogen of young foals and, more recently, of immunocompromised patients, whose pathogenic capacity is conferred by a large virulence plasmid. Our results show that (i) R. equi can be considered to be moderately resistant to lysozyme, (ii) the activity of lysozyme largely depends on its muramidase action rather than on its CAMP activity, and (iii) the virulence plasmid confers part of its lysozyme resistance capacity to R. equi. This study is the first one to demonstrate the influence of the virulence plasmid on the stress resistance capacity of R. equi and improves our understanding of the mechanisms enabling R. equi to resist the host defenses.  相似文献   

15.
In Staphylococcus aureus, the intracellular siderophore staphyloferrin B, which has been shown to chelate iron-bound to serum transferrin, is transported into cells by the SirABC system. In this work, we have analysed the role of the Sir transporter under stress conditions that resemble those imposed by the mammalian innate immune system. We show that exposure of S. aureus to oxidative and nitrosative stress generated by hydrogen peroxide and S-nitrosoglutathione, respectively, induced the expression of the sirA gene. The disruption of the sir operon led to a strain with lower viability and decreased resistance to oxidative stress. S. aureus sir null mutant was also analysed during infection of murine macrophages and shown to contribute to S. aureus survival inside macrophages. Altogether, our results indicate that the Sir transport system confers protection against reactive oxygen species, therefore, contributing to the virulence of S. aureus.  相似文献   

16.
The Bacillus subtilis LiaRS two-component system (TCS) responds to perturbations of the cell envelope induced by lipid II-interacting antibiotics, such as vancomycin, ramoplanin, nisin, and bacitracin. Here, we characterize Tn7-generated mutations that induce the liaRS TCS. In addition to insertions in liaF, a known negative regulator of the LiaRS TCS, we identified two disruptions in the last two genes of the yydFGHIJ operon. This operon is predicted to encode a 49-amino-acid peptide (YydF), a modification enzyme (YydG), a membrane-embedded protease (YydH), and an ATP-binding cassette (ABC) transporter (YydIJ). Genome sequence comparisons suggest that the yydFGHIJ operon may have been acquired by horizontal transfer. Inactivation of the YydIJ transporter resulted in increased expression from the LiaR-dependent PliaI promoter only in the presence of the yydFGH genes. Cells harboring the complete yydFGHIJ operon induced LiaR activity in cocultured cells lacking either this transporter or the complete operon. These results suggest that this operon is involved in the synthesis and export of a modified peptide (YydF*) that elicits cell envelope stress sensed by the LiaRS TCS.  相似文献   

17.
Two-component regulatory systems (TCS) are among the most widespread mechanisms that bacteria use to sense and respond to environmental changes. In the human pathogen Streptococcus pneumoniae, a total of 13 TCS have been identified and many of them have been linked to pathogenicity. Notably, TCS01 strongly contributes to pneumococcal virulence in several infection models. However, it remains one of the least studied TCS in pneumococci and its functional role is still unclear. In this study, we demonstrate that TCS01 cooperates with a BceAB-type ABC transporter to sense and induce resistance to structurally-unrelated antimicrobial peptides of bacterial origin that all target undecaprenyl-pyrophosphate or lipid II, which are essential precursors of cell wall biosynthesis. Even though tcs01 and bceAB genes do not locate in the same gene cluster, disruption of either of them equally sensitized the bacterium to the same set of antimicrobial peptides. We show that the key function of TCS01 is to upregulate the expression of the transporter, while the latter appears the main actor in resistance. Electrophoretic mobility shift assays further demonstrated that the response regulator of TCS01 binds to the promoter region of the bceAB genes, implying a direct control of these genes. The BceAB transporter was overexpressed and purified from E. coli. After reconstitution in liposomes, it displayed substantial ATPase and GTPase activities that were stimulated by antimicrobial peptides to which it confers resistance to, revealing new functional features of a BceAB-type transporter. Altogether, this inducible defense mechanism likely contributes to the survival of the opportunistic microorganism in the human host, in which competition among commensal microorganisms is a key determinant for effective host colonization and invasive path.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号