首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
BK polyomavirus (BKV) establishes persistent, low-level, and asymptomatic infections in most humans and causes polyomavirus-associated nephropathy (PVAN) and other pathologies in some individuals. The activation of BKV replication following kidney transplantation, leading to viruria, viremia, and, ultimately, PVAN, is associated with immune suppression as well as inflammation and stress from ischemia-reperfusion injury of the allograft, but the stimuli and molecular mechanisms leading to these pathologies are not well defined. The replication of BKV DNA in cell cultures is regulated by the viral noncoding control region (NCCR) comprising the core origin and flanking sequences, to which BKV T antigen (Tag), cellular proteins, and small regulatory RNAs bind. Six nuclear factor I (NFI) binding sites occur in sequences flanking the late side of the core origin (the enhancer) of the archetype virus, and their mutation, either individually or in toto, reduces BKV DNA replication when placed in competition with templates containing intact BKV NCCRs. NFI family members interacted with the helicase domain of BKV Tag in pulldown assays, suggesting that NFI helps recruit Tag to the viral core origin and may modulate its function. However, Tag may not be the sole target of the replication-modulatory activities of NFI: the NFIC/CTF1 isotype stimulates BKV template replication in vitro at low concentrations of DNA polymerase-α primase (Pol-primase), and the p58 subunit of Pol-primase associates with NFIC/CTF1, suggesting that NFI also recruits Pol-primase to the NCCR. These results suggest that NFI proteins (and the signaling pathways that target them) activate BKV replication and contribute to the consequent pathologies caused by acute infection.  相似文献   

2.
We recently described a soluble cell-free system derived from monkey cells that is capable of replicating exogenous plasmid DNA molecules containing the simian virus 40 (SV40) origin of replication (J.J. Li, and T.J. Kelly, Proc. Natl. Acad. Sci. U.S.A. 81:6973-6977, 1984). Replication in the system is completely dependent upon the addition of the SV40 large T antigen. In this report we describe additional properties of the in vitro replication reaction. Extracts prepared from cells of several nonsimian species were tested for the ability to support origin-dependent replication in the presence of T antigen. The activities of extracts derived from human cell lines HeLa and 293 were approximately the same as those of monkey cell extracts. Chinese hamster ovary cell extracts also supported SV40 DNA replication in vitro, but the extent of replication was approximately 1% of that observed with human or monkey cell extracts. No replication activity was detectable in extracts derived from BALB/3T3 mouse cells. The ability of these extracts to support replication in vitro closely parallels the ability of the same cells to support replication in vivo. We also examined the ability of various DNA molecules containing sequences homologous to the SV40 origin to serve as templates in the cell-free system. Plasmids containing the origins of human papovaviruses BKV and JCV replicated with an efficiency 10 to 20% of that of plasmids containing the SV40 origin. Plasmids containing Alu repeat sequences (BLUR8) did not support detectable DNA replication in vitro. Circular DNA molecules were found to be the best templates for DNA replication in the cell-free system; however, linear DNA molecules containing the SV40 origin also replicated to a significant extent (10 to 20% of circular molecules). Finally, electron microscopy of replication intermediates demonstrated that the initiation of DNA synthesis in vivo takes place at a unique site corresponding to the in vivo origin and that replication is bidirectional. These findings provide further evidence that replication in the cell-free system faithfully mimics SV40 DNA replication in vivo.  相似文献   

3.
Noncoding RNAs are recognized increasingly as important regulators of fundamental biological processes, such as gene expression and development, in eukaryotes. We report here the identification and functional characterization of the small noncoding human Y RNAs (hY RNAs) as novel factors for chromosomal DNA replication in a human cell-free system. In addition to protein fractions, hY RNAs are essential for the establishment of active chromosomal DNA replication forks in template nuclei isolated from late-G(1)-phase human cells. Specific degradation of hY RNAs leads to the inhibition of semiconservative DNA replication in late-G(1)-phase template nuclei. This inhibition is negated by resupplementation of hY RNAs. All four hY RNAs (hY1, hY3, hY4, and hY5) can functionally substitute for each other in this system. Mutagenesis of hY1 RNA showed that the binding site for Ro60 protein, which is required for Ro RNP assembly, is not essential for DNA replication. Degradation of hY1 RNA in asynchronously proliferating HeLa cells by RNA interference reduced the percentages of cells incorporating bromodeoxyuridine in vivo. These experiments implicate a functional role for hY RNAs in human chromosomal DNA replication.  相似文献   

4.
5.
The contribution of human DNA polymerase epsilon to nuclear DNA replication was studied. Antibody K18 that specifically inhibits DNA polymerase activity of human DNA polymerase epsilon in vitro significantly inhibits DNA synthesis both when microinjected into nuclei of exponentially growing human fibroblasts and in isolated HeLa cell nuclei. The capability of this neutralizing antibody to inhibit DNA synthesis in cells is comparable to that of monoclonal antibody SJK-132-20 against DNA polymerase alpha. Contrary to the antibody against DNA polymerase alpha, antibody K18 against DNA polymerase epsilon did not inhibit SV40 DNA replication in vitro. These results indicate that DNA polymerase epsilon plays a role in replicative DNA synthesis in proliferating human cells like DNA polymerase alpha, and that this role for DNA polymerase epsilon cannot be modeled by SV40 DNA replication.  相似文献   

6.
7.
8.
9.
Small non-coding RNAs constitute a large family of regulatory molecules with diverse functions. Notably, some small non-coding RNAs matched to rDNA have been identified as qiRNAs and small guide RNAs involved in various biological processes. However, a large number of small rDNA-derived RNAs (srRNAs) are usually neglected and yet to be investigated. We systematically investigated srRNAs using small RNA datasets generated by high-throughput sequencing, and found srRNAs are mainly mapped to rRNA coding regions in sense direction. The datasets from immunoprecipitation and high-throughput sequencing demonstrate that srRNAs are co-immunoprecipitated with Argonaute (AGO) proteins. Furthermore, the srRNA expression profile in mouse liver is affected by diabetes. Overexpression or inhibition of srRNAs in cultured cells shows that srRNAs are involved in various signaling pathways. This study presents a global view of srRNAs in total small RNA and AGO protein complex from different species, and demonstrates that srRNAs are correlated with diabetes, and involved in some biological processes. These findings provide new insights into srRNAs and their functions in various physiological and pathological processes.  相似文献   

10.
BK polyomavirus (BKPyV) is the most common viral pathogen among allograft patients. Increasing evidence links BKPyV to the human oral compartment and to HIV-associated salivary gland disease (HIVSGD). To date, few studies have analyzed orally derived BKPyV. This study aimed to characterize BKPyV isolated from throat wash (TW) samples from HIVSGD patients. The replication potential of HIVSGD-derived clinical isolates HIVSGD-1 and HIVSGD-2, both containing the noncoding control region (NCCR) architecture OPQPQQS, were assessed and compared to urine-derived virus. The BKPyV isolates displayed significant variation in replication potential. Whole-genome alignment of the two isolates revealed three nucleotide differences that were analyzed for a potential effect on the viral life cycle. Analysis revealed a negligible difference in NCCR promoter activity despite sequence variation and emphasized the importance of functional T antigen (Tag) for efficient replication. HIVSGD-1 encoded full-length Tag, underwent productive infection in both human salivary gland cells and kidney cells, and expressed viral DNA and Tag protein. Additionally, HIVSGD-1 generated DNase-resistant particles and by far surpassed the replication potential of the kidney-derived isolate in HSG cells. HIVSGD-2 encoded a truncated form of Tag and replicated much less efficiently. Quantitation of infectious virus, via the fluorescent forming unit assay, suggested that HIVSGD BKPyV had preferential tropism for salivary gland cells over kidney cells. Similarly, the results suggested that kidney-derived virus had preferential tropism for kidney cells over salivary gland cells. Evidence of HIVSGD-derived BKPyV oral tropism and adept viral replication in human salivary gland cells corroborated the potential link between HIVSGD pathogenesis and BKPyV.  相似文献   

11.
We describe a novel expression vector, pBK TK-1, that persists episomally in human cells that can be shuttled into bacteria. This vector includes sequences from BK virus (BKV), the thymidine kinase (TK) gene of herpes simplex virus type 1, and plasmid pML-1. TK+-transformed HeLa and 143 B cells contained predominantly full-length episomes. There were typically 20 to 40 (HeLa) and 75 to 120 143 B vector copies per cell, although some 143 B transformants contained hundreds. Low-molecular-weight DNA from TK+-transformed cells introduced into Escherichia coli were recovered as plasmids that were indistinguishable from the input vector. Removal of selective pressure had no apparent effect upon the episomal status of pBK TK-1 molecules in TK+-transformed cells. BKV T antigen may play a role in episomal replication of pBK TK-1 since this viral protein was expressed in TK+ transformants and since a plasmid that contained only the BKV origin of replication was highly amplified in BKV-transformed human cells that synthesize BKV T antigen.  相似文献   

12.
Replication factor C (RF-C), a complex of five polypeptides, is essential for cell-free SV40 origin-dependent DNA replication and viability in yeast. The cDNA encoding the large subunit of human RF-C (RF-Cp145) was cloned in a Southwestern screen. Using deletion mutants of RF-Cp145 we have mapped the DNA binding domain of RF-Cp145 to amino acid residues 369-480. This domain is conserved among both prokaryotic DNA ligases and eukaryotic poly(ADP-ribose) polymerases and is absent in other subunits of RF-C. The PCNA binding domain maps to amino acid residues 481-728 and is conserved in all five subunits of RF-C. The PCNA binding domain of RF-Cp145 inhibits several functions of RF-C, such as: (i) in vitro DNA replication of SV40 origin-containing DNA; (ii) RF-C-dependent loading of PCNA onto DNA; and (iii) RF-C-dependent DNA elongation. The PCNA binding domain of RF-Cp145 localizes to the nucleus and inhibits DNA synthesis in transfected mammalian cells. In contrast, the DNA binding domain of RF-Cp145 does not inhibit DNA synthesis in vitro or in vivo. We therefore conclude that amino acid residues 481-728 of human RF-Cp145 are critical and act as a dominant negative mutant of RF-C function in DNA replication in vivo.  相似文献   

13.
S Todd  J H Nguyen    B L Semler 《Journal of virology》1995,69(6):3605-3614
The replication of a picornavirus genomic RNA is a template-specific process involving the recognition of viral RNAs as target replication templates for the membrane-bound viral replication initiation complex. The virus-encoded RNA-dependent RNA polymerase, 3Dpol, is a major component of the replication complex; however, when supplied with a primed template, 3Dpol is capable of copying polyadenylated RNAs which are not of viral origin. Therefore, there must be some other molecular mechanism to direct the specific assembly of the replication initiation complex at the 3' end of viral genomic RNAs, presumably involving cis-acting binding determinants within the 3' noncoding region (3' NCR). This report describes the use of an in vitro UV cross-linking assay to identify proteins which interact with the 3' NCR of human rhinovirus 14 RNA. A cellular protein(s) was identified in cytoplasmic extracts from human rhinovirus 14-infected cells which had a marked binding preference for RNAs containing the rhinovirus 3' NCR sequence. This protein(s) showed reduced cross-linking efficiency for a 3' NCR with an engineered deletion. Virus recovered from RNA transfections with in vitro transcribed RNA containing the same 3' NCR deletion demonstrated a defective replication phenotype in vivo. Cross-linking experiments with RNAs containing the poliovirus 3' NCR and cytoplasmic extracts from poliovirus-infected cells produced an RNA-protein complex with indistinguishable electrophoretic properties, suggesting that the appearance of the cellular protein(s) may be a common phenomenon of picornavirus infection. We suggest that the observed cellular protein(s) is sequestered or modified as a result of rhinovirus or poliovirus infection and is utilized in viral RNA replication, perhaps by binding to the 3' NCR as a prerequisite for replication complex assembly at the 3' end of the viral genomic RNA.  相似文献   

14.
We describe a new complementation function within the simian virus 40 (SV40) A gene. This function is required for viral DNA replication and virus production in vivo but, surprisingly, does not affect any of the intrinsic enzymatic functions of T antigen directly required for in vitro DNA replication. Other well-characterized SV40 T-antigen mutants, whether expressed stably from integrated genomes or in cotransfection experiments, complement these mutants for in vivo DNA replication and plaque formation. These new SV40 mutants were isolated and cloned from human cells which stably carry the viral DNA. The alteration in the large-T-antigen gene was shown by marker rescue and nucleotide sequence analysis to be a deletion of 322 bp spanning the splice-donor site of the first exon, creating a 14-amino-acid deletion in the large T antigen. The mutant gene was expressed in H293 human cells from an adenovirus vector, and the protein was purified by immunoaffinity chromatography. The mutant protein directs greater levels of DNA replication in vitro than does the wild-type protein. Moreover, the mutant protein reduces the lag time for in vitro DNA synthesis and can be diluted to lower levels than wild-type T antigen and still promote good replication, which is in clear contrast to the in vivo situation. These biochemical features of the protein are independent of the source of the cellular replication factors (i.e., HeLa, H293, COS 7, or CV1 cells) and the cells from which the T antigens were purified. The mutant T antigen does not transform Rat-2 cells. Several different models which might reconcile the differences observed in vivo and in vitro are outlined. We propose that the function of T antigen affected prepares cells for SV40 replication by activation of a limiting cellular replication factor. Furthermore, a link between the induction of a cellular replication factor and transformation by SV40 is discussed.  相似文献   

15.
16.
Characterization of human papovavirus BK DNA.   总被引:21,自引:21,他引:0       下载免费PDF全文
The DNA of the BK virus (BKV) human papovavirus was found to be heterogeneous, consisting of at least four discrete species of DNA. Only the largest of these four species, BKV DNA (i), which has a molecular weight calculated to be 96% that of simian virus 40 (SV40) DNA, was infectious. Homogeneous preparations of BKV DNA were obtained, however, from virions purified after low multiplicity infections of human embryonic kidney cells. BKV DNA (i) was shown to contain a single R-Eco RI and four R-Hind cleavage sites. The R-Eco RI site was localized in the largest R-Hind cleavage fragment. Radiolabeled BKV DNA reassociated slightly faster than SV40 DNA; 20 to 30% polynucleotide sequence homology was demonstrated between the genomes of BKV and SV40 when the reaction was monitored by chromatography on hydroxyapatite.  相似文献   

17.
BK virus (BKV) is a polyomavirus which infects a large percentage of the human population. It is a potent transforming agent and is tumorigenic in rodents. BKV DNA has also been found in human brain, pancreatic islet, and urinary tract tumors, implicating this virus in neoplastic processes. BKV T antigen (TAg) is highly homologous to simian virus 40 TAg, particularly in regions required for mitogenic stimulation and binding to tumor suppressor proteins, The experiments presented in this report show that BKV TAg can bind the tumor suppressor protein p53. BKV TAg also has the ability to bind to members of the retinoblastoma (pRb) family of tumor suppressor proteins both in vivo and in vitro. However, these interactions are detected only when large amounts of total protein are used, because the levels of BKV TAg normally produced from viral promoter-enhancer elements are too low to bind a significant amount of the pRb family proteins in the cell. The low levels of BKV TAg produced by the viral promoter elements are sufficient to affect the levels and the phosphorylation patterns of these proteins and to induce serum-independent growth in these cells. Additional events, however, are required for full transformation. These data further support the notion that BKV TAg can affect cellular growth control mechanisms and may in fact be involved in neoplastic processes.  相似文献   

18.
Primate's p53 inhibits SV40 DNA replication in vitro   总被引:1,自引:0,他引:1  
Previous reports indicated that rodent p53 inhibits simian virus 40 (SV40) DNA replication in vitro as well as in vivo while that from primate cells does not (1-4). Here we report the evidence that p53 of primate origin also inhibits SV40 DNA replication in vitro. p53-SV40 large tumor antigen (T antigen) complex purified from SV40 infected COS-1 cells had little replication activity and inhibited SV40 DNA replication in vitro. These results suggest that inhibition of SV40 DNA replication by p53 should be regarded as general property of the protein and does not determine the mode of species specific replication of SV40 DNA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号