首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Saffold virus (SAFV) was identified as a human cardiovirus in 2007. Although several epidemiological studies have been reported, they have failed to provide a clear picture of the relationship between SAFV and human diseases. SAFV genotype 3 has been isolated from the cerebrospinal fluid specimen of patient with aseptic meningitis. This finding is of interest since Theiler’s murine encephalomyelitis virus (TMEV), which is the closely related virus, is known to cause a multiple sclerosis-like syndrome in mice. TMEV persistently infects in mouse macrophage cells in vivo and in vitro, and the viral persistence is essential in TMEV-induced demyelinating disease. The precise mechanism(s) of SAFV infection still remain unclear. In order to clarify the SAFV pathogenicity, in the present study, we studied the possibilities of the in vitro persistent infection of SAFV. The two distinct phenotypes of HeLa cells, HeLa-N and HeLa-R, were identified. In these cells, the type of SAFV-3 infection was clearly different. HeLa-N cells were lyticly infected with SAFV-3 and the host suitable for the efficient growth. On the other hand, HeLa-R cells were persistently infected with SAFV-3. In addition, the SAFV persistence in HeLa-R cells is independent of type I IFN response of host cells although the TMEV persistence in mouse macrophage cells depends on the response. Furthermore, it was suggested that SAFV persistence may be influenced by the expression of receptor(s) for SAFV infection on the host cells. The present findings on SAFV persistence will provide the important information to encourage the research of SAFV pathogenicity.  相似文献   

2.
The Cardiovirus genus of the family Picornaviridae includes two distinct species, Encephalomyocarditis virus and Theilovirus. We now report the complete nucleotide sequences of three Theiler's murine encephalomyelitis virus (TMEV) strains (TO Yale, TOB15, and Vie 415HTR) and of Vilyuisk human encephalomyelitis virus (VHEV). This information, together with the recently reported sequences of divergent theiloviruses (Theiler's-like rat virus [TRV] and Saffold viruses 1 and 2 [SAFV-1 and SAFV-2]), enables an updated phylogenetic analysis as well as a reexamination of several gene products important in the pathogenesis of this emerging group of viruses. In the light of the known neurotropism of TMEV and the new human SAFV-1 and SAFV-2, the resulting data suggest the existence of theiloviruses that cause human central nervous system infections. Our phylogenetic analyses point to the classification of presently known theiloviruses into five types: TMEV, VHEV, TRV, SAFV-1, and SAFV-2.  相似文献   

3.
Stress granules (SG) are cytoplasmic aggregates of stalled translation preinitiation complexes that form in cells exposed to various environmental stresses. Here, we show that stress granules assemble in cells infected with Theiler's murine encephalomyelitis virus (TMEV) mutants carrying alterations in the leader (L) protein, but not in cells infected with wild-type TMEV. Stress granules also formed in STAT1-deficient cells, suggesting that SG formation was not a consequence of increased type I interferon (IFN) production when cells were infected with the mutant virus. Ectopic expression of the wild-type L protein was sufficient to inhibit stress granule formation induced by sodium arsenite or thapsigargin treatment. In conclusion, TMEV infection induces stress granule assembly, but this process is inhibited by the L protein. Unlike poliovirus-induced stress granules, TMEV-induced stress granules did not contain the nuclear protein Sam68 but contained polypyrimidine tract binding protein (PTB), an internal ribosome entry site (IRES)-interacting protein. Moreover, G3BP was not degraded and was found in SG after TMEV infection, suggesting that SG content could be virus specific. Despite the colocalization of PTB with SG and the known interaction of PTB with viral RNA, in situ hybridization and immunofluorescence assays failed to detect viral RNA trapped in infection-induced SG. Recombinant Theiler's viruses expressing the L protein of Saffold virus 2 (SAFV-2), a closely related human theilovirus, or the L protein of mengovirus, an encephalomyocarditis virus (EMCV) strain, also inhibited infection-induced stress granule assembly, suggesting that stress granule antagonism is a common feature of cardiovirus L proteins.  相似文献   

4.
Himeda T  Ohara Y 《Journal of virology》2012,86(3):1292-1296
Although cardioviruses have been thought to mainly infect rodents, a novel human cardiovirus, designated Saffold virus (SAFV), was identified in 2007. SAFV is grouped with Theiler-like rat virus and Theiler's murine encephalomyelitis virus (TMEV) in the species Theilovirus of the genus Cardiovirus of the family Picornaviridae. Eight genotypes of SAFV have now been identified. SAFV has been isolated from nasal and stool specimens from infants presenting with respiratory and gastrointestinal symptoms as well as from children with nonpolio acute flaccid paralysis; however, the relationship of SAFV to this symptomatology remains unclear. Of note, the virus has also been isolated from the cerebrospinal fluid specimens of patients with aseptic meningitis. This finding is of interest since TMEV is known to cause a multiple sclerosis-like syndrome in mice. The involvement of SAFV in various diseases (e.g., respiratory illness, gastrointestinal illness, neurological diseases, and type I diabetes) is presently under investigation. In order to clarify the pathogenicity of SAFV, additional epidemiological studies are required. Furthermore, identification of the SAFV cellular receptor will help establish an animal model for SAFV infection and help clarify the pathogenesis of SAFV-related diseases. In addition, investigation of the tissue-specific expression of the receptor may facilitate development of a novel picornavirus vector, which could be a useful tool in gene therapy for humans. The study of viral factors involved in viral pathogenicity using a reverse genetics technique will also be important.  相似文献   

5.
Polypeptides of egg-borne Sendai virus (egg Sendai), which is biologically active on the basis of criteria of the infectivity for L cells and of hemolytic and cell fusion activities, were compared by polyacrylamide gel electrophoresis with those of L cell-borne (L Sendai) and HeLa cell-borne Sendai (HeLa Sendai) viruses, which are judged biologically inactive by the above criteria. Densitometer profiles on the stained gels of egg Sendai resolved six polypeptides (virion protein [VP] 1 to VP6), in which VP2 and VP4 were identified as glycoproteins by PAS stain. Comparative electropherograms of both L Sendai and HeLa Sendai revealed that there were significantly larger amounts in the VP2 region of these viruses but VP4 was present only in greatly reduced amounts as compared to egg Sendai. It was also found that VP2 of L Sendai and HeLa Sendai consisted of two components, VP2a and VP2b, but the one of egg Sendai consisted of only VP2a. A mild trypsin treatment which converts both L Sendai and HeLa Sendai to a biologically active form selectively removed VP2b from these viruses and increased concomitantly the amounts of materials in the VP4 region. The same treatment of egg Sendai affected neither its biological activities nor its electropherogram. Consequently, gross polypeptide profiles on the stained gels of L Sendai and HeLa Sendai after trypsin treatment became favorably comparable to that of egg Sendai. Electrophoresis of labeled L Sendai and HeLa Sendai with a (3)H-amino acids mixture and (14)C-glucosamine resolved at least three glycoproteins, GP1, GP2, and GP3, each corresponding to VP2a, VP2b, and VP4, respectively. The trypsin treatment of these viruses removed almost all the radioactivity of GP2 and simultaneously increased the radioactive counts of GP3 and raised small amounts of rapidly moving heterogeneous glycoprotein, GP4. A possible relationship between the biological modification and the above characteristic polypeptide patterns of Sendai virus was discussed.  相似文献   

6.
Xu  Yishi  Victorio  Carla Bianca Luena  Meng  Tao  Jia  Qiang  Tan  Yee-Joo  Chua  Kaw Bing 《中国病毒学》2019,34(3):262-269
Our previous work has shown that Saffold virus(SAFV) induced several rodent and primate cell lines to undergo apoptosis(Xu et al. in Emerg Microb Infect 3:1–8, 2014), but the essential viral proteins of SAFV involved in apoptotic activity lack study. In this study, we individually transfected the viral proteins of SAFV into HEp-2 and Vero cells to assess their ability to induce apoptosis, and found that the 2 B and 3 C proteins are proapoptotic. Further investigation indicated the transmembrane domain of the 2 B protein is essential for the apoptotic activity and tetramer formation of the 2 B protein. Our research provides clues for the possible mechanisms of apoptosis induced by SAFV in different cell lines. It also opens up new directions to study viral proteins(the 2 B, 3 C protein), and sets the stage for future exploration of any possible link between SAFV, inclusive of its related uncultivable genotypes, and multiple sclerosis.  相似文献   

7.
Theiler's murine encephalomyelitis viruses (TMEV) are picornaviruses that produce enteric and neurological diseases in mice. Subgroup TO strains of TMEV cause persistent infections with demyelination, while subgroup GDVII strains neither persist nor demyelinate. We produced neutralizing monoclonal antibodies (mAbs) to clarify the mechanisms of persistence and demyelination. Some of the neutralizing mAbs reacted with isolated VP1 on Western blots, while others were conformation specific. The neutralization site for the former TMEV mAbs was on the VP1 trypsin cleavage site of the intact virion. The neutralization site for the conformation-specific mAbs was distinct and was not affected by trypsin. Trypsin treatment of subgroup TO strains increased their infectivity for L cells, whereas the infectivity of subgroup GDVII strains was decreased by trypsin treatment. Subpopulations of virus in subgroup TO-infected tissue culture cells and in infected mouse brain homogenates contained VP1-cleaved virus; this VP1-cleaved virus gave rise to a large persistent fraction in neutralization tests when it was reacted with VP1-specific mAbs. These findings have implications regarding the pathogenesis of subgroup TO demyelinating disease. TMEV VP1 cleavage may be important for virus persistence because of disruption of a major neutralization epitope. The change in virus surface structure caused by VP1 cleavage may affect cell binding and lead to altered cytotropism. Immunocytes, which have been implicated in subgroup TO demyelination, may provide a source for proteases for VP1 cleavage.  相似文献   

8.
Theiler's murine encephalomyelitis viruses (TMEV) are separable into two groups based on their biological behavior: those highly virulent isolates which are unable to cause persistent infection and the less virulent isolates which regularly produce persistent central nervous system infection in mice. Two highly virulent and five less virulent TMEV were found to have the same buoyant density (1.34 g/ml) on isopycnic centrifugation and virion structure by electron microscopy. Negatively stained virus particles purified in Cs(2)SO(4) gradients appeared to have icosahedral symmetry and measured 28 nm in diameter. Mature virions were found to possess three major structural polypeptides, VP1, VP2 and VP3, in the range of 25,000 to 35,000 daltons, and a smaller fourth major polypeptide, VP4, of 6,000 daltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The precursor of VP2 and VP4, VP0, which is a minor polypeptide of mature picornavirus particles, was also identified. However, a slight but consistent difference in several of the capsid polypeptides between the highly virulent and less virulent TMEV was found. VP1 was slightly larger (34,000 versus 33,500 daltons) and VP2 was slightly smaller (31,000 versus 32,000 daltons) for the highly virulent strains compared to the same polypeptide species in the less virulent viruses. VP0 was also slightly smaller (35,500 versus 36,000 daltons) for the highly virulent isolates compared to their less virulent counterparts. Finally, trypsin which was used initially in our purification procedure resulted in preferential cleavage of a 2,000-molecular-weight fragment or fragments from VP1 of only the less virulent isolates.  相似文献   

9.
Zhou L  Luo Y  Wu Y  Tsao J  Luo M 《Journal of virology》2000,74(3):1477-1485
Theiler's murine encephalomyelitis virus (TMEV) is a picornavirus of the Cardiovirus genus. Certain strains of TMEV may cause a chronic demyelinating disease, which is very similar to multiple sclerosis in humans, associated with a persistent viral infection in the mouse central nervous system (CNS). Other strains of TMEV only cause an acute infection without persistence in the CNS. It has been shown that sialic acid is a receptor moiety only for the persistent TMEV strains and not for the nonpersistent strains. We report the effect of sialylation on cell surface on entry and the complex structure of DA virus, a persistent TMEV, and the receptor moiety mimic, sialyllactose, refined to a resolution of 3.0 A. The ligand binds to a pocket on the viral surface, composed mainly of the amino acid residues from capsid protein VP2 puff B, in the vicinity of the VP1 loop and VP3 C terminus. The interaction of the receptor moiety with the persistent DA strain provides new understanding for the demyelinating persistent infection in the mouse CNS by TMEV.  相似文献   

10.
The role of virus-specific cytotoxic T lymphocytes (CTL) in Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease, a viral model for multiple sclerosis, is not yet clear. To investigate the specificity and function of CTL generated in response to TMEV infection, we generated a panel of overlapping 20-mer peptides encompassing the entire capsid and leader protein region of the BeAn strain of TMEV. Binding of these peptides to H-2K(b) and H-2D(b) class I molecules of resistant mice was assessed using RMA-S cells. Several peptides displayed significant binding to H-2K(b), H-2D(b), or both. However, infiltrating cytotoxic T cells in the central nervous system of virus-infected mice preferentially lysed target cells pulsed with VP2(111-130/121-140) or VP2(121-130), a previously defined CTL epitope shared by the DA strain of TMEV and other closely related cardioviruses. In addition, at a high effector-to-target cell ratio, two additional peptides (VP2(161-180) and VP3(101-120)) sensitized target cells for cytolysis by infiltrating T cells or splenic T cells from virus-infected mice. The minimal epitopes within these peptides were defined as VP2(165-173) and VP3(110-120). Based on cytokine profiles, CTL specific for these subdominant epitopes are Tc2, in contrast to CTL for the immunodominant epitope, which are of the Tc1 type. Interestingly, CTL function towards both of these subdominant epitopes is restricted by the H-2D molecule, despite the fact that these epitopes bind both H-2K and H-2D molecules. This skewing toward an H-2D(b)-restricted response may confer resistance to TMEV-induced demyelinating disease, which is known to be associated with the H-2D genetic locus.  相似文献   

11.
We investigated the role of the immune system in protecting against virus-induced demyelination by generating lines of transgenic B10 (H-2(b)) congenic mice expressing three independent contiguous coding regions of the Theiler's murine encephalomyelitis virus (TMEV) under the control of a class I major histocompatibility complex (MHC) promoter. TMEV infection of normally resistant B10 mice results in virus clearance and development of inflammatory demyelination in the spinal cord. Transgenic expression of the viral capsid genes resulted in inactivation of virus-specific CD8(+) T lymphocytes (class I MHC immune function) directed against the relevant peptides, but it did not affect production of virus capsid-specific antibodies or lymphocyte proliferation to the virus antigen (class II MHC immune functions). Following intracerebral infection with TMEV, all three lines of mice survived the acute encephalitis but transgenic mice expressing VP1 (or the cluster of virus capsid proteins [VP4, VP2, and VP3] mapping to the left of VP1 in the TMEV genome) developed virus persistence and subsequent demyelination in spinal cord white matter. Transgenic mice expressing noncapsid proteins mapping to the right of VP1 (2A, 2B, 2C, 3A, 3B, 3C, and 3D) cleared the virus and did not develop demyelination. These results are consistent with the hypothesis that virus capsid gene products of TMEV stimulate class I-restricted CD8(+) T-cell immune responses, which are important for virus clearance and for protection against myelin destruction. Presented within the context of self-antigens, inactivation of these cells by ubiquitous expression of relevant virus capsid peptides partially inhibited resistance to virus-induced demyelination.  相似文献   

12.
Wild-type Daniel’s strain of Theiler’s virus (wt-DA) induces a chronic demyelination in susceptible mice which is similar to multiple sclerosis. A variant of wt-DA (designated DA-P12) generated during the 12th passage of persistent infection of a G26-20 glioma cell line failed to persist and induce demyelination in SJL/J mice. To identify the determinants responsible for this change in phenotype, we sequenced the capsid coding sequence (nucleotides [nt] 2991 to 3994) and found three mutations in VP1: residues 99 (Gly to Ser), 100 (Gly to Asp), and 103 (Asn to Lys). To study the role of these mutations in neurovirulence and demyelination, we prepared a recombinant virus, DAP-1C-2A/DA, with replacement of wt-DA nt 2991 to 3994 with the corresponding region of DA-P12, and viruses with individual point mutations at VP1 residues 99(Ser), 100(Asp), and 103(Lys). DAP-1C-2A/DA and viruses with a mutation at VP1 residue 99 or 100 (but not 103) completely attenuated the ability of wt-DA to induce demyelination. Failure to induce demyelination was not due to a general failure in growth, since DA-P12 and other mutant viruses lysed L-2 cells in vitro as effectively as wt-DA. The change in disease phenotype was independent of the specific B- or T-cell immune recognition because a decrease in the neurovirulence of mutant viruses was observed in neonatal mice and immune-deficient RAG1 −/− mice. This difference in neurovirulence is not the complete explanation for the failure of DA-P12 to demyelinate, since virus with a mutation at residue 103(Lys) had decreased neurovirulence but did induce demyelination. Therefore, point mutation at VP1 residue 99 or 100 altered the ability of wt-DA to demyelinate, perhaps related to a disruption in interaction between virus and receptor on certain neural cells.  相似文献   

13.
Theiler's murine encephalomyelitis virus (TMEV) is divided into two subgroups based on neurovirulence. During the acute phase, DA virus infects cells in the gray matter of the central nervous system (CNS). Throughout the chronic phase, DA virus infects glial cells in the white matter, causing demyelinating disease. Although GDVII virus also infects neurons in the gray matter, infected mice developed a severe polioencephalomyelitis, and no virus is detected in the white matter or other areas in the CNS in rare survivors. Several sequence differences between the two viruses are located in VP2 puff B and VP1 loop II, which are located near each other, close to the proposed receptor binding site. We constructed a DA virus mutant, DApBL2M, which has the VP1 loop II of GDVII virus and a mutation at position 171 in VP2 puff B. While DApBL2M virus replicated less efficiently than DA virus during the acute phase, DApBL2M-induced acute polioencephalitis was comparable to that in DA virus infection. Interestingly, during the chronic phase, DApBL2M caused prolonged gray matter disease in the brain without white matter involvement in the spinal cord. This is opposite what is observed during wild-type DA virus infection. Our study is the first to demonstrate that conformational differences via interaction of VP2 puff B and VP1 loop II between GDVII and DA viruses can play an important role in making the transition of infection from the gray matter in the brain to the spinal cord white matter during TMEV infection.  相似文献   

14.
H Miyata  H Sato 《Jikken dobutsu》1990,39(4):539-548
The hemagglutinating-inhibition (HI) test was used to detect antibodies for Theiler's murine encephalomyelitis virus (TMEV), and the virus was isolated from sero-positive mice derived from colonies in Japan. HI antibody was detected in conventional mice (38.7%; 137/354) at titers ranging from 1:8 to 1:512, but it not in SPF mice (0/90). To isolate the virus, weanling mice inoculated intracerebrally with samples obtained from sero-positive mice were sacrificed and 10% brain homogenates were subcultured. New isolates designated as YOC and AB strains were obtained, and their physicochemical and biological properties were characterized. The results indicated that the new isolates were similar to Theiler's original (TO) strain according to the following observations of persistent paralysis of the hind limbs, resistance to ether treatment, a particles size of 10 approximately 50 nm in diameter, stability at pH 3, a density of 1.35 g/cm3 and three major and one minor viral proteins, (VPO; 38 Kd, VP 1; 33 Kd, VP2; 32Kd, VP3; 25 Kd). Immunoblotting analysis also showed that VP 2 of YOC and encephalomyocarditis virus of the Cardiovirus group, reacted strongly with the antisera against the viruses as well as with the GDVII strain. These results suggest that TMEV infection does exist in conventional mouse colonies in Japan, and that these viruses resemble the TO strain of TMEV.  相似文献   

15.
Theiler's murine encephalomyelitis viruses (TMEV) are ubiquitous pathogens of mice, producing either rapidly fatal encephalitis (high-neurovirulence strains) or persistent central nervous system infection and inflammatory demyelination (low-neurovirulence strains). Although a protein entry receptor has not yet been identified, carbohydrate co-receptors that effect docking and concentration of the virus on the cell surface are known for both TMEV neurovirulence groups. Low-neurovirulence TMEV use α2,3-linked N-acetylneuramic acid (sialic acid) on an N-linked glycoprotein, whereas high-neurovirulence TMEV use the proteoglycan heparan sulfate (HS) as a co-receptor. While the binding of low-neurovirulence TMEV to sialic acid can be inhibited completely, only a third of the binding of high-neurovirulence TMEV to HS is inhibitable, suggesting that high-neurovirulence strains use another co-receptor or bind directly to the putative protein entry receptor. Four amino acids on the surface (VP2 puff B) of low-neurovirulence strains make contact with sialic acid through non-covalent hydrogen bonds. Since these virus residues are conserved in all TMEV strains, the capsid conformation of this region is probably responsible for sialic acid binding. A persistence determinant that maps within the virus coat using recombinant TMEV is also conformational in nature. Low-neurovirulence virus variants that do not bind to sialic acid fail to persist in the central nervous system of mice, indicating a role for sialic acid binding in TMEV persistence. Analysis of high-neurovirulence variants that do not bind HS demonstrates that HS co-receptor usage influences neuronal tropism in brain, whereas, the HS co-receptor use is not required for the infection of spinal cord anterior horn cells associated with poliomyelitis.  相似文献   

16.
R L Yauch  K Kerekes  K Saujani    B S Kim 《Journal of virology》1995,69(11):7315-7318
Intracerebral inoculation of susceptible strains of mice with Theiler's murine encephalomyelitis virus (TMEV) results in a chronic, immunologically mediated demyelinating disease that shares many features with human multiple sclerosis. CD4+ T lymphocytes play a critical role in the pathogenesis of virus-induced demyelinating disease. We have identified a region within amino acid residues 24 to 37 of the VP3 capsid protein of TMEV (VP3(24-37)) that is recognized by T lymphocytes from the demyelination-susceptible SJL/J strain of mice. The T-cell response to VP3(24-37) represents a predominant Th-cell response against the virus from either TMEV-immunized or TMEV-infected SJL/J mice, and viral epitopes VP1(233-250), VP2(74-86), and VP3(24-37) account for most of the Th-cell response to TMEV.  相似文献   

17.
Poliovirus mutants were selected during the persistent infection of human neuroblastoma cells. These viruses could establish secondary persistent infections in HEp-2 nonneural cells. We report the identification of a region of the genome of a persistent virus (S11) that was sufficient to confer to a recombinant virus the phenotype that causes persistent infection in HEp-2 cells. This region, between nucleotides 1148 and 3481, contained 11 missense mutations mapping exclusively in the genes of capsid proteins VP1 and VP2. Because recombinant viruses carrying only one of these two mutated genes were not able to cause persistent infection, it seems very probable that two or more mutations in these genes are required for expression of the phenotype that causes persistent infection.  相似文献   

18.
We sought to confirm the importance of L* protein for growth of Theiler's murine encephalomyelitis virus (TMEV) in a macrophage-like cell line, J774-1. The protein is out of frame with the polyprotein and synthesized in DA but not GDVII subgroup strains of TMEV. A recombinant virus, DANCL*/GD, which substitutes the DA 5' noncoding and L* coding regions for the corresponding regions of GDVII and synthesizes L* protein, grew with little restriction in J774-1 cells. In contrast, another recombinant virus, DANCL*-1/GD, which has an ACG rather than an AUG as the starting codon of L* protein at nucleotide 1079, resulting in no synthesis of L* protein, did not grow well. No significant difference between the rates of adsorption to J774-1 cells of these viruses was observed. RNase protection assay demonstrated that DANCL*/GD viral RNA significantly increased, whereas only a minimal increase was observed for DANCL*-1/GD. The present study suggests that L* protein is required for virus growth in macrophages.  相似文献   

19.
20.
Theiler's murine encephalomyelitis virus (TMEV) is a natural pathogen of the mouse. The different strains of TMEV are divided into two subgroups according to the pathology they provoke. The neurovirulent strains GDVII and FA induce an acute fatal encephalitis, while persistent strains, like DA and BeAn, cause a chronic demyelinating disease associated with viral persistence in the central nervous system. Different receptor usage was proposed to account for most of the phenotype difference between neurovirulent and persistent strains. Persistent but not neurovirulent strains were shown to bind sialic acid. We characterized DA and GDVII derivatives adapted to grow on CHO-K1 cells. Expression of glycosaminoglycans did not influence infection of CHO-K1 cells by parental and adapted viruses. Mutations resulting from adaptation of DA and GDVII to CHO-K1 cells notably mapped to the well-characterized VP1 CD and VP2 EF loops of the capsid. Adaptation of the DA virus to CHO-K1 cells correlated with decreased sialic acid usage for entry. In contrast, adaptation of the GDVII virus to CHO-K1 cells correlated with the appearance of a weak sialic acid usage for entry. The sialic acid binding capacity of the GDVII variant resulted from a single amino acid mutation (VP1-51, Asn-->Ser) located out of the sialic acid binding region defined for virus DA. Mutations affecting tropism in vitro and sialic acid binding dramatically affected the persistence and neurovirulence of the viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号