首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Trail F  Xu H  Loranger R  Gadoury D 《Mycologia》2002,94(2):181-189
We investigated ascospore discharge in the perithecial fungus, Gibberella zeae. In a wind tunnel study that simulated constant rain and varying day and night lengths, the rate of ascospore release was approximately 8-30% greater under light than in complete darkness. Under constant light, ascospore discharge occurred at maximal rates at relative humidity levels greater than 92%. When perithecia were placed under conditions of high external osmolarity, ascospore discharge was significantly reduced. Ascospores were discharged from asci along with droplets of fluid, the epiplasm, from within the ascus. Analysis of discharged epiplasmic fluid by GC-MASS Spectrometry revealed that mannitol was the major simple sugar component of the fluid. Activity of mannitol dehydrogenase, which catalyzes the conversion of fructose to mannitol, was higher in protein extracts from mature perithecia than in extracts from vegetative tissue. Several inhibitors of K(+) and Ca(++) ion channels inhibited ascospore discharge, which suggested that ascospore discharge resulted from the buildup of turgor pressure generated by ion fluxes and mannitol accumulation.  相似文献   

3.
In the yeast Saccharomyces cerevisiae, the MID1 (mating-induced death) gene encodes a stretch-activated channel which is required for successful mating; the mutant phenotype is rescued by elevated extracellular calcium. Homologs of the MID1 gene are found in fungi that are morphologically complex compared to yeast, both Basidiomycetes and Ascomycetes. We explored the phenotype of a mid-1 knockout mutant in the filamentous ascomycete Neurospora crassa. The mutant exhibits lower growth vigor than the wild type (which is not rescued by replete calcium) and mates successfully. Thus, the role of the MID-1 protein differs from that of the homologous gene product in yeast. Hyphal cytology, growth on diverse carbon sources, turgor regulation, and circadian rhythms of the mid-1 mutant are all similar to those of the wild type. However, basal turgor is lower than wild type, as is the activity of the plasma membrane H(+)-ATPase (measured by cyanide [CN(-)]-induced depolarization of the energy-dependent component of the membrane potential). In addition, the mutant is unable to grow at low extracellular Ca(2+) levels or when cytoplasmic Ca(2+) is elevated with the Ca(2+) ionophore A23187. We conclude that the MID-1 protein plays a role in regulation of ion transport via Ca(2+) homeostasis and signaling. In the absence of normal ion transport activity, the mutant exhibits poorer growth.  相似文献   

4.
5.
Polyketides are a class of secondary metabolites that exhibit a vast diversity of form and function. In fungi, these compounds are produced by large, multidomain enzymes classified as type I polyketide synthases (PKSs). In this study we identified and functionally disrupted 15 PKS genes from the genome of the filamentous fungus Gibberella zeae. Five of these genes are responsible for producing the mycotoxins zearalenone, aurofusarin, and fusarin C and the black perithecial pigment. A comprehensive expression analysis of the 15 genes revealed diverse expression patterns during grain colonization, plant colonization, sexual development, and mycelial growth. Expression of one of the PKS genes was not detected under any of 18 conditions tested. This is the first study to genetically characterize a complete set of PKS genes from a single organism.  相似文献   

6.
Bacillus subtilis JA antagonized the growth of Gibberella zeae. In order to reduce growth of this fungi pathogen to a greater extent, low-energy ion beam implantation was applied in mutant breeding. We studied the effects of different energies and different doses of nitrogen ion implantation. The mutant strain designated as JA026 was obtained showing higher inhibition activity in the screening plate. Its inhibition zone against indicator organism increased by 14.3% compared to the original strain. The electrospray ionization mass spectrometry (ESI/MS) analysis indicated that the antifungal lipopeptides produced by the mutant were identical to those produced by the wild-type strain. The mutant strain exhibited favorable properties including the high yield of antifungal lipopeptides production and faster growth over the parent strain, which suggested that this strain would be a promising biocontrol candidate in agriculture.  相似文献   

7.
Two distant homologues of the bestrophin gene family have been identified in the filamentous fungus, Aspergillus nidulans (anbest1 and anbest2). AnBEST1 was functionally characterised using the patch clamp technique and was shown to be an anion selective channel permeable to citrate. Furthermore, AnBEST1 restored the growth of the pdr12Δ yeast mutant on inhibitory concentrations of extracellular propionate, benzoate and sorbate, also consistent with carboxylated organic anion permeation of AnBEST1. Similar to its animal counterparts, AnBEST1 currents were activated by elevated cytosolic Ca(2+) with a K(d) of 1.60μM. Single channel currents showed long (>10s) open and closed times with a unitary conductance of 16.3pS. Transformation of A. nidulans with GFP-tagged AnBEST1 revealed that AnBEST1 localised to the plasma membrane. An anbest1 null mutant was generated to investigate the possibility that AnBEST1 mediated organic anion efflux across the plasma membrane. Although organic anion efflux was reduced from anbest1 null mutants, this phenotype was linked to the restoration of uracil/uridine-requiring A. nidulans strains to uracil/uridine prototrophy. In conclusion, this study identifies a new family of organic anion-permeable channels in filamentous fungi. We also reveal that uracil/uridine-requiring Aspergillus strains exhibit altered organic anion metabolism which could have implications for the interpretation of physiological studies using auxotrophic Aspergillus strains.  相似文献   

8.
The function of Fig1, a transmembrane protein of the low-affinity calcium uptake system (LACS) in fungi, was examined for its role in the growth and development of the plant pathogen Fusarium graminearum. The Δfig1 mutants failed to produce mature perithecia, and sexual development was halted prior to the formation of perithecium initials. The loss of Fig1 function also resulted in a reduced vegetative growth rate. Macroconidium production was reduced 70-fold in the Δfig1 mutants compared to the wild type. The function of the high-affinity calcium uptake system (HACS), comprised of the Ca(2+) channels Mid1 and Cch1, was previously characterized for F. graminearum. To better understand the roles of the LACS and the HACS, Δfig1 Δmid1, Δfig1 Δcch1, and Δfig1 Δmid1 Δcch1 double and triple mutants were generated, and the phenotypes of these mutants were more severe than those of the Δfig1 mutants. Pathogenicity on wheat was unaffected for the Δfig1 mutants, but the Δfig1 Δmid1, Δfig1 Δcch1, and Δfig1 Δmid1 Δcch1 mutants, lacking both LACS and HACS functions, had reduced pathogenicity. Additionally, Δfig1 mutants of Neurospora crassa were examined and did not affect filamentous growth or female fertility in a Δfig1 mating type A strain, but the Δfig1 mating type a strain failed to produce fertile fruiting bodies. These results are the first report of Fig1 function in filamentous ascomycetes and expand its role to include complex fruiting body and ascus development.  相似文献   

9.
In contrast to animal and plant cells, very little is known of ion channel function in fungal physiology. The life cycle of most fungi depends on the “filamentous” polarized growth of hyphal cells; however, no ion channels have been cloned from filamentous fungi and comparatively few preliminary recordings of ion channel activity have been made. In an attempt to gain an insight into the role of ion channels in fungal hyphal physiology, a homolog of the yeast K+ channel (ScTOK1) was cloned from the filamentous fungus, Neurospora crassa. The patch clamp technique was used to investigate the biophysical properties of the N. crassa K+ channel (NcTOKA) after heterologous expression of NcTOKA in yeast. NcTOKA mediated mainly time-dependent outward whole-cell currents, and the reversal potential of these currents indicated that it conducted K+ efflux. NcTOKA channel gating was sensitive to extracellular K+ such that channel activation was dependent on the reversal potential for K+. However, expression of NcTOKA was able to overcome the K+ auxotrophy of a yeast mutant missing the K+ uptake transporters TRK1 and TRK2, suggesting that NcTOKA also mediated K+ influx. Consistent with this, close inspection of NcTOKA-mediated currents revealed small inward K+ currents at potentials negative of EK. NcTOKA single-channel activity was characterized by rapid flickering between the open and closed states with a unitary conductance of 16 pS. NcTOKA was effectively blocked by extracellular Ca2+, verapamil, quinine, and TEA+ but was insensitive to Cs+, 4-aminopyridine, and glibenclamide. The physiological significance of NcTOKA is discussed in the context of its biophysical properties.  相似文献   

10.
Elucidation of high-resolution structures of integral membrane proteins is drastically lagging behind that of cytoplasmic proteins. In vitro synthesis and insertion of membrane proteins into synthetic membranes could circumvent bottlenecks associated with the overexpression of membrane proteins, producing sufficient membrane-inserted, correctly folded protein for structural studies. Using the mechanosensitive channel of large conductance, MscL, as a model protein we show that in vitro synthesized MscL inserts into YidC-containing proteoliposomes and oligomerizes to form a homopentamer. Using planar membrane bilayers, we show that MscL forms functional ion channels capable of ion transport. These data demonstrate that membrane insertion of MscL is YidC mediated, whereas subsequent oligomerization into a functional homopentamer is a spontaneous event.  相似文献   

11.
We identified two syntaxin-like SNARE genes, named GzSYN1 and GzSYN2, from the plant pathogenic ascomycete Gibberella zeae, and characterized the functions and cellular localization of these genes. The GzSYN1 deletion mutant (Δgzsyn1) had 71% reduced hyphal growth compared to the wild-type strain, but produced perithecia with normal ascospores. Δgzsyn2 had the same hyphal growth rate as the wild-type, but completely lost both self and female fertility. When Δgzsyn2 was spermatized for Δmat1-1 or Δmat1-2 strains, it retained its male fertility, but the ascus shape was abnormal and ascospore delimitation was delayed. The Δgzsyn1 and Δgzsyn2 virulence on barley was reduced by 67% and 75%, respectively, compared to the wild-type. The GFP::GzSYN1 fusion protein was localized in vesicles, vacuoles, plasma membranes, and septa, whereas GFP::GzSYN2 was found only in plasma membranes and septa. These results suggest that syntaxins have key roles in fungal development and virulence in G. zeae.  相似文献   

12.
NADPH oxidases are enzymes that produce reactive oxygen species (ROS) using electrons derived from intracellular NADPH. In plants and mammals, ROS have been proposed to be second messengers that signal defence responses or cell proliferation. By inactivating PaNox1 and PaNox2, two genes encoding NADPH oxidases, we demonstrate the crucial role of these enzymes in the control of two key steps of the filamentous fungus Podospora anserina life cycle. PaNox1 mutants are impaired in the differentiation of fruiting bodies from their progenitor cells, and the deletion of the PaNox2 gene specifically blocks ascospore germination. Furthermore, we show that PaNox1 likely acts upstream of PaASK1, a MAPKKK previously implicated in stationary phase differentiation and cell degeneration. Using nitro blue tetrazolium (NBT) and diaminobenzidine (DAB) assays, we detect a regulated secretion of both superoxide and peroxide during P. anserina vegetative growth. In addition, two oxidative bursts are shown to occur during fruiting body development and ascospore germination. Analysis of mutants establishes that PaNox1, PaNox2, and PaASK1, as well as a still unknown additional source of ROS, modulate these secretions. Altogether, our data point toward a role for NADPH oxidases in signalling fungal developmental transitions with respect to nutrient availability. These enzymes are conserved in other multicellular eukaryotes, suggesting that early eukaryotes were endowed with a redox network used for signalling purposes.  相似文献   

13.
14.
《Autophagy》2013,9(1):33-49
Autophagy is a tightly controlled degradation process involved in various developmental aspects of eukaryotes. However, its involvement in developmental processes of multicellular filamentous ascomycetes is largely unknown. Here, we analyzed the impact of the autophagic proteins SmATG8 and SmATG4 on the sexual and vegetative development of the filamentous ascomycete Sordaria macrospora. A Saccharomyces cerevisiae complementation assay demonstrated that the S. macrospora Smatg8 and Smatg4 genes can functionally replace the yeast homologs. By generating homokaryotic deletion mutants, we showed that the S. macrospora SmATG8 and SmATG4 orthologs were associated with autophagy-dependent processes. Smatg8 and Smatg4 deletions abolished fruiting-body formation and impaired vegetative growth and ascospore germination, but not hyphal fusion. We demonstrated that SmATG4 was capable of processing the SmATG8 precursor. SmATG8 was localized to autophagosomes, whereas SmATG4 was distributed throughout the cytoplasm of S. macrospora. Furthermore, we could show that Smatg8 and Smatg4 are not only required for nonselective macroautophagy, but for selective macropexophagy as well. Taken together, our results suggest that in S. macrospora, autophagy seems to be an essential and constitutively active process to sustain high energy levels for filamentous growth and multicellular development even under nonstarvation conditions.  相似文献   

15.
Trail F  Xu H 《Phytochemistry》2002,61(7):791-796
The mannitol-2-dehydrogenase (MtDH) from Gibberella zeae was purified and the corresponding cDNA identified. Purification of MtDH was accomplished using a combination of ammonium sulfate fractionation, anion exchange and dye-ligand chromatography. Final purification was achieved following electroelution from a native gel. Molecular mass determination based on SDS-PAGE indicated that the denatured protein was 29 kDa. Native protein mass was determined to be 110 kDa using gel permeation chromatography, indicating a tetrameric form. The pH optima for mannitol oxidation and fructose reductase activities were 9.0, and 7.0, respectively. Activity with sorbitol as the substrate was 21% of activity with mannitol. Kinetic parameters were determined by direct-linear plots of enzyme activity vs. substrate concentrations. Fructose concentrations above 600 mM and NADPH concentrations above 0.3 mM caused substrate inhibition. Comparisons of predicted amino acid sequences of several fungal MtDHs indicated high conservation within the phyla. A possible role for MtDH in generation of turgor pressure for forcible ascospore discharge is discussed.  相似文献   

16.
17.
The mechanosensitive (MS) ion channel is gated by changes in bilayer deformation. It is functional without the presence of any other proteins and gating of the channel has been successfully achieved using conventional patch clamping techniques where a voltage has been applied together with a pressure over the membrane. Here, we have for the first time analyzed the large conducting (MscL) channel in a supported membrane using only an external electrical field. This was made possible using a newly developed technique utilizing a tethered lipid bilayer membrane (tBLM), which is part of an engineered microelectronic array chip. Single ion channel activity characteristic for MscL was obtained, albeit with lower conductivity. The ion channel was gated using solely a transmembrane potential of 300 mV. Computations demonstrate that this amount of membrane potential induces a membrane tension of 12 dyn/cm, equivalent to that calculated to gate the channel in patch clamp from pressure-induced stretching of the bilayer. These results strengthen the supposition that the MscL ion channel gates in response to stress in the lipid membrane rather than pressure across it. Furthermore, these findings illustrate the possibility of using the MscL as a release valve for engineered membrane devices; one step closer to mimicking the true function of the living cell.  相似文献   

18.
19.
Silar P 《Fungal biology》2011,115(8):793-802
While grafting and transplant experiments have extensively been used to study development in animals and plants, they have seldom been employed to study fungal development. Here, grafting is used to study the interplay between mycelium and multicellular fruiting bodies during maturation in the model ascomycete Podospora anserina. Data indicate that grafts need a competent mycelium to continue their ripening. Vegetative incompatibility does not prevent transplanted fructifications to undergo development. Grafting onto mutant mycelia confirmed a previous model stating that the NADPH oxidase PaNox1 is required in the developing fruiting bodies, while the MAP kinase cascade PaMpk1 is required in the mycelium. Data also show that the IDC1 protein is required not only in the developing fruiting bodies but also in the mycelium, likely because of its role in anastomosis. Finally, entry inside the grafted fruiting bodies of a ribosomal protein tagged with GFP could be detected, suggesting that cellular components are imported from the underlying mycelium during maturation.  相似文献   

20.
BAY-K-8644, a calcium channel agonist, induces a rise in cytoplasmic free calcium and iodide discharge in cultured porcine thyroid cells. The cytoplasmic free calcium concentration, [Ca2+]i, was measured using aequorin, a calcium-sensitive photoprotein. BAY-K-8644, a dihydropyridine derivative, acts as a Ca channel agonist and induces a rise in [Ca2+]i and iodide discharge; 0.5 nM BAY-K-8644 is a minimal dose to effect a rise in [Ca2+]i and iodide discharge and 50 nM BAY-K-8644 produces the maximal effect. The data indicate that BAY-K-8644-induced iodide discharge is mediated by a rise in [Ca2+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号