首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The duck hepatitis B virus (DHBV) pregenomic RNA is a bicistronic mRNA encoding the core and polymerase proteins. Thirteen AUGs (C2 to C14) and 10 stop codons (S1 to S10) are located between the C1 AUG for the core protein and the P1 AUG that initiates polymerase translation. We previously found that the translation of the DHBV polymerase is initiated by ribosomal shunting. Here, we assessed the biosynthetic events after shunting. Translation of the polymerase open reading frame was found to initiate at the C13, C14, and P1 AUGs. Initiation at the C13 AUG occurred through ribosomal shunting because translation from this codon was cap dependent but was insensitive to blocking ribosomal scanning internally in the message. C13 and C14 are in frame with P1, and translation from these upstream start codons led to the production of larger isoforms of P. We named these isoforms “pre-P” by analogy to the pre-C and pre-S regions of the core and surface antigen open reading frames. Pre-P was produced in DHBV16 and AusDHBV-infected duck liver and was predicted to exist in 80% of avian hepadnavirus strains. Pre-P was not encapsidated into DHBV core particles, and the viable strain DHBV3 cannot make pre-P, so it is not essential for viral replication. Surprisingly, we found that pre-P is an N-linked glycoprotein that is secreted into the medium of cultured cells. These data indicate that DHBV produces an additional protein that has not been previously reported. Identifying the role of pre-P may improve our understanding of the biology of DHBV infection.  相似文献   

3.
4.
Regulatory sequences of duck hepatitis B virus C gene transcription   总被引:3,自引:3,他引:0       下载免费PDF全文
R Schneider  H Will 《Journal of virology》1991,65(11):5693-5701
  相似文献   

5.
RNA base pairing between the initiation codon and anticodon loop of initiator tRNA is essential but not sufficient for the selection of the 'correct' mRNA translational start site by ribosomes. In prokaryotes, additional RNA interactions between small ribosomal subunit RNA and mRNA sequences just upstream of the start codon can efficiently direct the ribosome to the initiation site. Although there is presently no proof for a similar important ribosomal RNA interaction in eukaryotes, the 5' non-coding regions of their mRNAs and 'consensus sequences' surrounding initiation codons have been shown to be strong determinants for initiation-site selection, but the exact mechanisms are not yet understood. Intramolecular base pairing in mRNA and participation of translation initiation factors can strongly influence the formation of mRNA–small ribosomal subunit–initiator tRNA complexes and modulate translational activities in both prokaryotes and eukaryotes. Only recently has it been appreciated that alternative mechanisms may also contribute to the selection of initiation codons in all organisms. Although direct proof is currently lacking, there is accumulating evidence that additional cis -acting mRNA elements and trans -acting proteins may form specific 'bridging' interactions with ribosomes during translation initiation.  相似文献   

6.
Sen N  Cao F  Tavis JE 《Journal of virology》2004,78(21):11751-11757
The duck hepatitis B virus (DHBV) polymerase (P) is translated by de novo initiation from a downstream open reading frame (ORF) that partially overlaps the core (C) ORF on the bicistronic pregenomic RNA (pgRNA). The DHBV P AUG is in a poor context for translational initiation and is preceded by 14 AUGs that could intercept scanning ribosomes, yet P translation is unanticipatedly rapid. Therefore, we assessed C and P translation in the context of the pgRNA. Mutating the upstream C ORF revealed that P translation was inversely related to C translation, primarily due to occlusion of P translation by ribosomes translating C. Translation of the pgRNA was found to be cap dependent, because inserting a stem-loop (BamHI-SL) that blocked >90% of scanning ribosomes at the 5' end of the pgRNA greatly inhibited C and P synthesis. Neither mutating AUGs between the C and P start sites in contexts similar to that of the P AUG nor blocking ribosomal scanning by inserting the BamHI-SL between the C and P start codons greatly altered P translation, indicating that most ribosomes that translate P do not scan through these sequences. Finally, optimizing the P AUG context did not increase P translation. Therefore, the majority of the ribosomes that translate P are shunted from a donor region near the 5' end of the pgRNA to an acceptor site at or near the P AUG, and the shunt acceptor sequences may augment initiation at the P AUG.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
Binding of mRNA leader sequences to ribosomes was studied in conditions of a cell-free translation system based on wheat germ extract. Leader sequence of TMV mRNA (the so-called omega-RNA sequence) was able to bind simultaneously 80S ribosome and 40S ribosomal subunit. It was found that nucleotide substitutions in omega-RNA resulting in destabilization of RNA structure have no effect on the complex formation with both 80S ribosome and 40S ribosomal subunit. Leader sequence of globin mRNA is also able to form a similar joint complex. It is supposed that the ability of mRNA leader sequences to bind simultaneously 80S ribosome and 40S subunit is independent of leader nature and may reflect previously unknown eukaryotic mechanisms of translation initiation.  相似文献   

15.
16.
A well-established feature of the translation initiation region, which attracts the ribosomes to the prokaryotic mRNAs, is a purine rich area called Shine/Dalgarno sequence (SD). There are examples of various other sequences, which despite having no similarity to an SD sequence are capable of enhancing and/or initiating translation. The mechanisms by which these sequences affect translation remain unclear, but a base pairing between mRNA and 16S ribosomal RNA (rRNA) is proposed to be the likely mechanism. In this study, using a computational approach, we identified a non-SD signal found specifically in the translation initiation regions of Escherichia coli mRNAs, which contain super strong SD sequences. Nine of the 11 E. coli translation initiation regions, which were previously identified for having super strong SD sequences, also contained six or more nucleotides complementary to box-17 on the 16S rRNA (nucleotides 418-554). Mutational analyses of those initiation sequences indicated that when complementarity to box-17 was eliminated, the efficiency of the examined sequences to mediate the translation of chloramphenicol acetyltransferase (CAT) mRNA was reduced. The results suggest that mRNA sequences with complementarity to box-17 of 16S rRNA may function as enhancers for translation in E. coli.  相似文献   

17.
18.
We have constructed synthetic coding sequences for the expression of poly(alpha,L-glutamic acid) (PLGA) as fusion proteins with dihydrofolate reductase (DHFR) in Escherichia coli. These PLGA coding sequences use both GAA and GAG codons for glutamic acid and contain sequence elements (5'-GAGGAGG-3') that resemble the consensus Shine-Dalgarno (SD) sequence found at translation initiation sites in bacterial mRNAs. An unusual feature of DHFR-PLGA expression is that accumulation of the protein is inversely related to the level of induction of its mRNA. Cellular protein synthesis was inhibited >95% by induction of constructs for either translatable or untranslatable PLGA RNAs. Induction of PLGA RNA resulted in the depletion of free 30S ribosomal subunits and the appearance of new complexes in the polyribosome region of the gradient. Unlike normal polyribosomes, these complexes were resistant to breakdown in the presence of puromycin. The novel complexes contained 16S rRNA, 23S rRNA, and PLGA RNA. We conclude that multiple noninitiator SD-like sequences in the PLGA RNA inhibit cellular protein synthesis by sequestering 30S small ribosomal subunits and 70S ribosomes in nonfunctional complexes on the PLGA mRNA.  相似文献   

19.
rRNA synthesis in the nucleolus   总被引:31,自引:0,他引:31  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号