首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Here, we report the identification of a novel hydrolase in Saccharomyces cerevisiae. Ldh1p (systematic name, Ybr204cp) comprises the typical GXSXG-type lipase motif of members of the α/β-hydrolase family and shares some features with the peroxisomal lipase Lpx1p. Both proteins carry a putative peroxisomal targeting signal type1 (PTS1) and can be aligned with two regions of homology. While Lpx1p is known as a peroxisomal enzyme, subcellular localization studies revealed that Ldh1p is predominantly localized to lipid droplets, the storage compartment of nonpolar lipids. Ldh1p is not required for the function and biogenesis of peroxisomes, and targeting of Ldh1p to lipid droplets occurs independently of the PTS1 receptor Pex5p.  相似文献   

2.
Deletion of PDR5 gene (Deltapdr5) in Saccharomyces cerevisiae led to increased resistance to calcium. The cellular Ca2+ level in the presence of high calcium as estimated by reporter assay in Deltapdr5 cells was significantly lower than that in wild-type cells. Membrane Pdr5p levels diminished rapidly during incubation with high calcium in a manner dependent on calcineurin and Pep4p, suggesting a feedback regulatory mechanism for Pdr5p abundance.  相似文献   

3.
To identify new proteins involved in Mn2+ homeostasis, we isolated Mn(2+)-resistant mutants of Saccharomyces cerevisiae starting from a calcineurin-deficient, Mn2+ hypersensitive strain (delta cmp1 delta cmp2). The mutations were found to lie in the PMR1 gene, known to encode a "P-type" Ca(2+)-ATPase that transports Ca2+ and Mn2+ from the cytosol to the Golgi apparatus. A second gene, AHP1, was cloned as a suppressor of the Mn2+ tolerance of a delta cmp1 delta cmp2 pmr1 mutant. Ahp1p was recently described as a thioredoxin peroxidase type II, an antioxidant protein with alkyl hydroperoxide defense properties in yeast. AHP1 disruption in strain W303 decreased tolerance to Mn2+ and H2O2. We found that a GFP-Ahp1p fusion construct was in the cytosol when cells were grown in glucose, and in the mitochondria when cells were grown in oleate. Based on Mn2+ transport data, we concluded that Ahp1p is involved in cellular Mn2+ homeostasis in trafficking of Mn2+ from cytosol to mitochondria and from cytosol for export across the plasma membrane.  相似文献   

4.
5.
Acetyl-CoA hydrolase (Ach1p), catalyzing the hydrolysis of acetyl-CoA, is presumably involved in regulating intracellular acetyl-CoA or CoASH pools; however, its intracellular functions and distribution remain to be established. Using site-directed mutagenesis analysis, we demonstrated that the enzymatic activity of Ach1p is dependent upon its putative acetyl-CoA binding sites. The ach1 mutant causes a growth defect in acetate but not in other non-fermentable carbon sources, suggesting that Ach1p is not involved in mitochondrial biogenesis. Overexpression of Ach1p, but not constructs containing acetyl-CoA binding site mutations, in ach1-1 complemented the defect of acetate utilization. By subcellular fractionation, most of the Ach1p in yeast was distributed with mitochondria and little Ach1p in the cytoplasm. By immunofluorescence microscopy, we show that Ach1p and acetyl-CoA binding site-mutated constructs, but not its N-terminal deleted construct, are localized in mitochondria. Moreover, the onset of pseudohyphal development in homozygote ach1-1 diploids was abolished. We infer that Ach1p may be involved in a novel acetyl-CoA biogenesis and/or acetate utilization in mitochondria and thereby indirectly affect pseudohyphal development in yeast.  相似文献   

6.
7.
In a search for components involved in Mn2+ homeostasis in the budding yeast Saccharomyces cerevisiae, we isolated a mutant with modifications in Mn2+ transport. The mutation was found to be located in HIP1, a gene known to encode a high-affinity permease for histidine. The mutation, designated hip1–272, caused a frameshift that resulted in a stop codon at position 816 of the 1812-bp ORF. This mutation led to Mn2+ resistance, whereas the corresponding null mutation did not. Both hip1–272 cells and the null mutant exhibited low tolerance to divalent cations such as Co2+, Ni2+, Zn2+, and Cu2+. The Mn2+ phenotype was not influenced by supplementary histidine in either mutant, whereas the sensitivity to other divalent cations was alleviated by the addition of histidine. The cellular Mn2+ content of the hip1–272 mutant was lower than that of wild type or null mutant, due to increased rates of Mn2+ efflux. We propose that Hip1p is involved in Mn2+ transport, carrying out a function related to Mn2+ export.  相似文献   

8.
9.
Williams-Hart T  Wu X  Tatchell K 《Genetics》2002,160(4):1423-1437
Protein phosphatase type 1 (PP1) is encoded by the essential gene GLC7 in Saccharomyces cerevisiae. glc7-109 (K259A, R260A) has a dominant, hyperglycogen defect and a recessive, ion and drug sensitivity. Surprisingly, the hyperglycogen phenotype is partially retained in null mutants of GAC1, GIP2, and PIG1, which encode potential glycogen-targeting subunits of Glc7. The R260A substitution in GLC7 is responsible for the dominant and recessive traits of glc7-109. Another mutation at this residue, glc7-R260P, confers only salt sensitivity, indicating that the glycogen and salt traits of glc7-109 are due to defects in distinct physiological pathways. The glc7-109 mutant is sensitive to cations, aminoglycosides, and alkaline pH and exhibits increased rates of l-leucine and 3,3'-dihexyloxacarbocyanine iodide uptake, but it is resistant to molar concentrations of sorbitol or KCl, indicating that it has normal osmoregulation. KCl suppresses the ion and drug sensitivities of the glc7-109 mutant. The CsCl sensitivity of this mutant is suppressed by recessive mutations in PMA1, which encodes the essential plasma membrane H(+)ATPase. Together, these results indicate that Glc7 regulates ion homeostasis by controlling ion transport and/or plasma membrane potential, a new role for Glc7 in budding yeast.  相似文献   

10.
11.
A homgenate of Saccharomyces cerevisiae grown under semi-anaerobic as well as aerobic conditions was found to catalyze the hydrolysis of fatty acid esters of sterols in the presence of Triton X-100. The enzyme levels in cells grown under various conditions were similar and the enzyme had a broad substrate specificity for sterol esters. The enzyme was localized in the mitochondrial fraction for the aerobically grown cells and in the mitochondrial and cytosolic fractions for the semi-anaerobically grown cells.  相似文献   

12.
Swe1p, the sole Wee1-family kinase in Saccharomyces cerevisiae, is synthesized during late G1 and is then degraded as cells proceed through the cell cycle. However, Swe1p degradation is halted by the morphogenesis checkpoint, which responds to insults that perturb bud formation. The Swe1p stabilization promotes cell cycle arrest through Swe1p-mediated inhibitory phosphorylation of Cdc28p until the cells can recover from the perturbation and resume bud formation. Swe1p degradation involves the relocalization of Swe1p from the nucleus to the mother-bud neck, and neck targeting requires the Swe1p-interacting protein Hsl7p. In addition, Swe1p degradation is stimulated by its substrate, cyclin/Cdc28p, and Swe1p is thought to be a target of the ubiquitin ligase SCF(Met30) acting with the ubiquitin-conjugating enzyme Cdc34p. The basis for regulation of Swe1p degradation by the morphogenesis checkpoint remains unclear, and in order to elucidate that regulation we have dissected the Swe1p degradation pathway in more detail, yielding several novel findings. First, we show here that Met30p (and by implication SCF(Met30)) is not, in fact, required for Swe1p degradation. Second, cyclin/Cdc28p does not influence Swe1p neck targeting, but can directly phosphorylate Swe1p, suggesting that it acts downstream of neck targeting in the Swe1p degradation pathway. Third, a screen for functional but nondegradable mutants of SWE1 identified two small regions of Swe1p that are key to its degradation. One of these regions mediates interaction of Swe1p with Hsl7p, showing that the Swe1p-Hsl7p interaction is critical for Swe1p neck targeting and degradation. The other region did not appear to affect interactions with known Swe1p regulators, suggesting that other as-yet-unknown regulators exist.  相似文献   

13.
14.
The budding yeast Saccharomyces cerevisiae contains two homologues of bacterial IscA proteins, designated Isa1p and Isa2p. Bacterial IscA is a product of the isc (iron-sulfur cluster) operon and has been suggested to participate in Fe-S cluster formation or repair. To test the function of yeast Isa1p and Isa2p, single or combinatorial disruptions were introduced in ISA1 and ISA2. The resultant isaDelta mutants were viable but exhibited a dependency on lysine and glutamate for growth and a respiratory deficiency due to an accumulation of mutations in mitochondrial DNA. As with other yeast genes proposed to function in Fe-S cluster assembly, mitochondrial iron concentration was significantly elevated in the isa mutants, and the activities of the Fe-S cluster-containing enzymes aconitase and succinate dehydrogenase were dramatically reduced. An inspection of Isa-like proteins from bacteria to mammals revealed three invariant cysteine residues, which in the case of Isa1p and Isa2p are essential for function and may be involved in iron binding. As predicted, Isa1p is targeted to the mitochondrial matrix. However, Isa2p is present within the intermembrane space of the mitochondria. Our deletion analyses revealed that Isa2p harbors a bipartite N-terminal leader sequence containing a mitochondrial import signal linked to a second sequence that targets Isa2p to the intermembrane space. Both signals are needed for Isa2p function. A model for the nonredundant roles of Isa1p and Isa2p in delivering iron to sites of the Fe-S cluster assembly is discussed.  相似文献   

15.
Lipid related diseases, such as obesity, type 2 diabetes, and atherosclerosis are epidemics in developed civilizations. A common underlying factor among these syndromes is excessive subcellular accumulation of lipids such as cholesterol and triglyceride. The homeostatic events that govern these metabolites are understood to varying degrees of sophistication. We describe here the utilization of a genetically powerful model organism, budding yeast, to identify and characterize novel aspects of sterol and lipid homeostasis.  相似文献   

16.
17.
Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
The gene encoding organophosphorus hydrolase (OPH) from Flavobacterium species was expressed on the cell surface of Saccharomyces cerevisiae MT8-1 using a glycosylphosphatidylinositol (GPI) anchor linked to the C-terminal region of OPH. Immunofluorescence microscopy confirmed the localization of OPH on the cell surface, and fluorescence intensity measurement of cells revealed that 1.4 x 10(4) molecules of OPH per cell were displayed. Seventy percent of OPH whole-cell activity was detected on the cell surface by protease accessibility assay. The activity of OPH was highly dependent on cell growth conditions. The maximum activity was obtained when cells were grown in a synthetic dextrose medium lacking tryptophan (SD-W) buffered by 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES, 200 mM, pH 7.0) at 20 degrees C, and cobalt chloride was added at 0.1 mM. S. cerevisiae MT8-1 displaying OPH which exhibited a higher activity than Escherichia coli displaying OPH using the ice nucleation protein (INP) anchor. The use of S. cerevisiae MT8-1, which has a "generally regarded as safe (GRAS)" status, as a host for the easy expression of the OPH gene provides a new biocatalyst useful for simultaneous detoxification and detection of organophosphorus pesticides.  相似文献   

18.
19.
The ability of sodium arsenite at concentrations of 10(-2), 10(-4), and 10(-6) M to induce lipid peroxidation in Saccharomyces cerevisiae cells was studied. Arsenite at the concentrations 10(-2) and 10(-4) M enhanced lipid peroxidation and inhibited the growth of yeast cells. Enhanced lipid peroxidation likely induced oxidative damage to various cellular structures, which led to suppression of the metabolic activity of cells. Arsenite at the concentration 10(-6) M did not activate lipid peroxidation in cells. All of the tested arsenite concentrations inhibited the activity of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase in cells. The inference is made that the toxicity of arsenite may be related to its stimulating effect on intracellular lipid peroxidation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号