首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The pathway for the biogenesis of varietal thiols, such as 3-mercaptohexanol (3MH), 3-mercaptohexyl acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP) in Sauvignon blanc (SB) wines is still an open question. Varietal thiol development requires yeast activity, but poor correlation has been found between thiols and their putative respective precursors. This research is the first application of metabolomics to unravel metabolites in the grape juice that affect the production of varietal thiols in wines. Comprehensive metabolite profiling of 63 commercially harvested SB juices were performed by combining gas chromatography–mass spectrometry and nuclear magnetic resonance spectroscopy. These juices were fermented under controlled laboratory conditions using a commercial yeast strain (EC1118) at 15 °C. Correlation of thiol concentration in the wines with initial metabolite profiles identified 24 metabolites that showed positive correlation (R > 0.3) with both 3MH and 3MHA, while only glutamine had positive correlation with 4MMP. Subsequently, we carried out juice manipulation experiments by adding subsets of these 24 metabolites in a 2011 SB grape juice in order to validate the hypotheses generated by metabolomics. The juice manipulation results confirmed metabolomics hypotheses and revealed grape juice metabolites that significantly impact on the development of three major varietal thiols and other aroma compounds of SB wines.  相似文献   

2.
Two volatile thiols, 3-mercaptohexan-1-ol (3MH), and 3-mercaptohexyl-acetate (3MHA), reminiscent of grapefruit and passion fruit respectively, are critical varietal aroma compounds in Sauvignon Blanc (SB) wines. These aromatic thiols are not present in the grape juice but are synthesized and released by the yeast during alcoholic fermentation. Single deletion mutants of 67 candidate genes in a laboratory strain of Saccharomyces cerevisiae were screened using gas chromatography mass spectrometry for their thiol production after fermentation of SB grape juice. None of the deletions abolished production of the two volatile thiols. However, deletion of 17 genes caused increases or decreases in production by as much as twofold. These 17 genes, mostly related to sulfur and nitrogen metabolism in yeast, may act by altering the regulation of the pathway(s) of thiol production or altering substrate supply. Deleting subsets of these genes in a wine yeast strain gave similar results to the laboratory strain for sulfur pathway genes but showed strain differences for genes involved in nitrogen metabolism. The addition of two nitrogen sources, urea and di-ammonium phosphate, as well as two sulfur compounds, cysteine and S-ethyl-L-cysteine, increased 3MH and 3MHA concentrations in the final wines. Collectively these results suggest that sulfur and nitrogen metabolism are important in regulating the synthesis of 3MH and 3MHA during yeast fermentation of grape juice.  相似文献   

3.
The free thiols 3-mercapto-hexanol (3MH) and its acetate, practically absent from musts, are liberated by yeast during fermentation from a cysteinylated precursor [S-3-(hexan-1-ol)-l-cysteine (Cys-3MH)] present in the grape must and contribute favorably to the flavor of Sauvignon white wines. Production of 3MH is increased when urea is substituted for diammonium phosphate (DAP) as the sole nitrogen source on a synthetic medium. On grape must, complementation with DAP induces a decrease of 3MH production. This observation is reminiscent of nitrogen catabolite repression (NCR). The production of 3MH is significantly lower for a gap1Delta mutant compared with the wild type, during fermentation of a synthetic medium containing Cys-3MH as the precursor and urea as the sole nitrogen source. Mutants isolated from an enological strain with a relief of NCR on GAP1 produce significantly higher amounts of 3MH on synthetic medium than the parental strain. These phenotypes were not confirmed on grape must. It is concluded that on synthetic medium, Cys-3MH enters the cell through at least one identified transporter, GAP1p, whose activity is limiting the release of volatile thiols. On grape must, the uptake of the precursor through GAP1p is not confirmed, but the effect of addition of DAP, eventually prolonging NCR, is shown to decrease thiol production.  相似文献   

4.
5.
Volatile thiols, particularly 4-mercapto-4-methylpentan-2-one (4MMP), make an important contribution to the aroma of wine. During wine fermentation, Saccharomyces cerevisiae mediates the cleavage of a nonvolatile cysteinylated precursor in grape juice (Cys-4MMP) to release the volatile thiol 4MMP. Carbon-sulfur lyases are anticipated to be involved in this reaction. To establish the mechanism of 4MMP release and to develop strains that modulate its release, the effect of deleting genes encoding putative yeast carbon-sulfur lyases on the cleavage of Cys-4MMP was tested. The results led to the identification of four genes that influence the release of the volatile thiol 4MMP in a laboratory strain, indicating that the mechanism of release involves multiple genes. Deletion of the same genes from a homozygous derivative of the commercial wine yeast VL3 confirmed the importance of these genes in affecting 4MMP release. A strain deleted in a putative carbon-sulfur lyase gene, YAL012W, produced a second sulfur compound at significantly higher concentrations than those produced by the wild-type strain. Using mass spectrometry, this compound was identified as 2-methyltetrathiophen-3-one (MTHT), which was previously shown to contribute to wine aroma but was of unknown biosynthetic origin. The formation of MTHT in YAL012W deletion strains indicates a yeast biosynthetic origin of MTHT. The results demonstrate that the mechanism of synthesis of yeast-derived wine aroma components, even those present in small concentrations, can be investigated using genetic screens.  相似文献   

6.
Volatile thiols, particularly 4-mercapto-4-methylpentan-2-one (4MMP), make an important contribution to the aroma of wine. During wine fermentation, Saccharomyces cerevisiae mediates the cleavage of a nonvolatile cysteinylated precursor in grape juice (Cys-4MMP) to release the volatile thiol 4MMP. Carbon-sulfur lyases are anticipated to be involved in this reaction. To establish the mechanism of 4MMP release and to develop strains that modulate its release, the effect of deleting genes encoding putative yeast carbon-sulfur lyases on the cleavage of Cys-4MMP was tested. The results led to the identification of four genes that influence the release of the volatile thiol 4MMP in a laboratory strain, indicating that the mechanism of release involves multiple genes. Deletion of the same genes from a homozygous derivative of the commercial wine yeast VL3 confirmed the importance of these genes in affecting 4MMP release. A strain deleted in a putative carbon-sulfur lyase gene, YAL012W, produced a second sulfur compound at significantly higher concentrations than those produced by the wild-type strain. Using mass spectrometry, this compound was identified as 2-methyltetrathiophen-3-one (MTHT), which was previously shown to contribute to wine aroma but was of unknown biosynthetic origin. The formation of MTHT in YAL012W deletion strains indicates a yeast biosynthetic origin of MTHT. The results demonstrate that the mechanism of synthesis of yeast-derived wine aroma components, even those present in small concentrations, can be investigated using genetic screens.  相似文献   

7.
Cysteine-conjugated volatile thiols are powerful aromatic compounds that contribute to the fruity notes of many white wines and especially Sauvignon Blanc. Genetic selection programs of wine yeast starters able to produce more volatile thiols constitute, therefore, an important goal for the wine industry. Recent investigations on yeast metabolism suggested that the ß-lyase Irc7p and the control of its gene expression by nitrogen catabolite repression constitute a rational way for yeast genetic improvement. This work demonstrates that the use of a natural ure2 mutation can be used to design wine starters with an enhanced capacity of volatile thiols production. By applying backcrosses driven by molecular markers, this allelic form was introduced in different starter backgrounds. Our investigations demonstrate that the ure2 inheritance is able to enhance the production of 4MMP (recently renamed 4MSP) and 3MH (recently renamed 3SH). For 4MMP, this effect depends of the presence of the allele IRC7 LT encoding a long form of the Irc7 protein. Moreover, a correlation in between the expression level of this allelic form and 4MMP production was found within industrial starters. All together, these results emphasised the use of molecular breeding for improving quantitative traits of industrial strains without the use of genetically modifying strategies.  相似文献   

8.
2-Methoxy-3-isobutylpyrazine (MIBP) contributes a bell pepper aroma to many grape cultivars and has a reported aroma threshold of ~2 ng L(-1) in water. The purpose of this study was twofold: (1) develop a procedure using headspace solid phase micro-extraction combined with GC-MS in the selected ion monitoring mode (HS-SPME-GC-MS-SIM) for analysis of MIBP in grape berries, and (2) determine the location of MIBP biosynthesis in grapevines by approach grafting clusters of Vitis vinifera L. cvs Cabernet Sauvignon and Muscat blanc onto each other. The soluble solids and pH of the grape juice/homogenate matrix from different grape berry developmental stages influenced the method precision; therefore, quantification via the method of standard addition was used. Using our developed method, the limit of detection (LOD) and limit of quantitation (LOQ) of MIBP were 0.1 ng L(-1) and 2 ng L(-1), respectively, measured in a model juice and non-MIBP containing Chardonnay juice. Spiked recoveries averaged between 91% and 112% in Cabernet Sauvignon and Pinot noir homogenates and the overall relative standard deviation was less than 10%. The method was used to analyze MIBP in 29 grape cultivars and in fruit from clusters grafted to Cabernet Sauvignon or Muscat vines. Quantifiable levels were found only in Cabernet franc, Cabernet Sauvignon, Merlot, Sauvignon blanc and Semillon, providing information on the genetic connection for the occurrence of MIBP in grapes. No MIBP was detected in the berries of Muscat blanc clusters grafted onto Cabernet Sauvignon vines when sampled at fruit maturity. MIBP was detected in all berries of Cabernet Sauvignon regardless the graft configuration. The data indicate that MIBP or its precursors originate in the berry and its formation depends upon grape genotype.  相似文献   

9.
The volatile thiol 4-mercapto-4-methylpentan-2-one (4MMP) is a potent contributor to wine aroma. In grape juice, 4MMP is bound to cysteine as a non-volatile compound and requires the action of yeast during fermentation to release the aroma active thiol. A method was developed to measure 4MMP release from the precursor by headspace solid-phase microextraction and separation by gas chromatography with atomic emission detection to screen the ability of wine yeast to release 4MMP. Yeast commonly used in white wine making were grown with the precursor at two different temperatures, and the amount of 4MMP released was measured. The results demonstrate that yeast strain selection and fermentation temperature can provide an important tool to enhance or modulate the grape-derived aromas formed during wine fermentation.  相似文献   

10.
4-Methyl-4-sulfanylpentan-2-one (1; 4MSP) provides a characteristic aroma compound of wines made from Vitis vinifera L. cv. Sauvignon blanc. 4MSP has a strong box-tree odor with a very low perception threshold and is derived from the cysteinylated precursor S-(1,1-dimethyl-3-oxobutyl)cysteine (4; P-4MSP). P-4MSP is transformed into 4MSP during alcoholic fermentation and is an excellent marker of varietal aroma potential. An improved synthesis of P-4MSP as well as of its deuterium-labeled analogue [D(6)]-P-4MSP is described. Several analytical methods (NMR, IR, LSI-MS, GC/MS, ESI-MS(n)) were combined to elucidate spontaneous reversible structural changes of P-4MSP at different pH values. At low pH, P-4MSP has a linear keto form. The keto-enol tautomerism was observed at neutral pH. At pH 8, the formation of N-substituted intramolecular hemiaminal was characterized by ESI-MS and ESI-MS(n) experiments. The hemiaminal loses H(2)O at high pH to produce a cycloimine, which is easily opened by acid hydrolysis. The keto-enol tautomerism explained the incorporation of only six D-atoms during the preparation of the P-4MSP deuterated standard even if [D(10)]mesityl oxide was used. Derivatization conditions for GC/MS analysis strongly affected the ratio of the monosilylated intramolecular cyclic form and the disilylated linear form of P-4MSP. The structural changes of P-4MSP may have a considerable impact on the development of methods of measuring varietal aroma potential.  相似文献   

11.
12.
13.
Arginosuccinate (ASA) synthetase and lyase activities were detected in extracts from Vitis vinifera L. cv. Chenin blanc mature leaves and seedlings. Optimum reaction conditions for ASA synthetase were 10 millimolar l-citrulline, 7.5 millimolar l-aspartate, 3 to 4 millimolar ATP, 12 millimolar Mg(2+) (pH 7.5 to 8.0), enzyme extract up to equivalent of about 200 milligrams of fresh tissue, and incubation temperature of 38 to 40 C. Optimum reaction conditions for ASA lyase were 4 millimolar ASA-K salt (pH 7.3 to 7.8), amount of extract up to equivalent of about 180 milligrams of fresh tissue, and incubation temperature of 38 to 40 C.  相似文献   

14.
An S-adenosyl-L-methionine-dependent O-methyl-transferase capable of methylating 2-hydroxy-3-alkyl-pyrazine (HP) was purified 7,300-fold to apparent homogeneity with an 8.2% overall recovery from Vitis vinifera L. (cv. Cabernet Sauvignon) through a purification procedure including column chromatography on DEAE-Sepharose FF, Ether-5PW, hydroxyapatite, G2000SWXL, and DEAE-5PW. The relative molecular mass of the native enzyme estimated on gel permeation chromatography was 85 kDa, and the subunit molecular mass was estimated to be 41 kDa on SDS-polyacrylamide gel electrophoresis. The enzyme also methylates caffeic acid. The Vmax for IBHP and caffeic acid were 0.73 and 175 pkatals/mg, respectively, and the respective Km for IBHP and caffeic acid were 0.30 and 0.032 mM. The optimum pH for IBHP (8.5) was different from that for caffeic acid (7.5).  相似文献   

15.
An S-adenosyl-L-methionine-dependent O-methyltransferase capable of methylating 2-hydroxy-3-alkylpyrazine (HP) was purified 7,300-fold to apparent homogeneity with an 8.2% overall recovery from Vitis vinifera L. (cv. Cabernet Sauvignon) through a purification procedure including column chromatography on DEAE-Sepharose FF, Ether-5PW, hydroxyapatite, G2000SW(XL), and DEAE-5PW. The relative molecular mass of the native enzyme estimated on gel permeation chromatography was 85 kDa, and the subunit molecular mass was estimated to be 41 kDa on SDS-polyacrylamide gel electrophoresis. The enzyme also methylates caffeic acid. The Vmax for IBHP and caffeic acid were 0.73 and 175 pkatals/mg, respectively, and the respective Km for IBHP and caffeic acid were 0.30 and 0.032 mm. The optimum pH for IBHP (8.5) was different from that for caffeic acid (7.5).  相似文献   

16.
The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid concentration decreased by more than half. These changes in the wine and distillate composition had a pronounced effect on the solvent or chemical aroma (associated with ethyl acetate and iso-amyl acetate) and the herbaceous and heads-associated aromas of the final distillate and the solvent or chemical and fruity or flowery characters of the Chenin blanc wines. This study establishes the concept that the overexpression of acetyltransferase genes such as ATF1 could profoundly affect the flavor profiles of wines and distillates deficient in aroma, thereby paving the way for the production of products maintaining a fruitier character for longer periods after bottling.  相似文献   

17.
Volatile esters are responsible for the fruity character of fermented beverages and thus constitute a vital group of aromatic compounds in beer and wine. Many fermentation parameters are known to affect volatile ester production. In order to obtain insight into the production of ethyl esters during fermentation, we investigated the influence of several fermentation variables. A higher level of unsaturated fatty acids in the fermentation medium resulted in a general decrease in ethyl ester production. On the other hand, a higher fermentation temperature resulted in greater ethyl octanoate and decanoate production, while a higher carbon or nitrogen content of the fermentation medium resulted in only moderate changes in ethyl ester production. Analysis of the expression of the ethyl ester biosynthesis genes EEB1 and EHT1 after addition of medium-chain fatty acid precursors suggested that the expression level is not the limiting factor for ethyl ester production, as opposed to acetate ester production. Together with the previous demonstration that provision of medium-chain fatty acids, which are the substrates for ethyl ester formation, to the fermentation medium causes a strong increase in the formation of the corresponding ethyl esters, this result further supports the hypothesis that precursor availability has an important role in ethyl ester production. We concluded that, at least in our fermentation conditions and with our yeast strain, the fatty acid precursor level rather than the activity of the biosynthetic enzymes is the major limiting factor for ethyl ester production. The expression level and activity of the fatty acid biosynthetic enzymes therefore appear to be prime targets for flavor modification by alteration of process parameters or through strain selection.  相似文献   

18.
Selected Saccharomyces cerevisiae strains are used for wine fermentation. Based on several criteria, winemakers often use a specific yeast to improve the flavor, mouth feel, decrease the alcohol content and desired phenolic content, just to name a few properties. Scientists at the AWRI previously illustrated the potential for increased flavor release from grape must via overexpression of the Escherichia coli Tryptophanase enzyme in wine yeast. To pursue a self-cloning approach for improving the aroma production, we recently characterized the S. cerevisiae cystathionine β-lyase STR3, and investigated its flavor releasing capabilities. Here, we continue with a phylogenetic investigation of STR3 homologs from non-Saccharomyces yeasts to map the potential for using natural variation to engineer new strains.  相似文献   

19.
De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts   总被引:1,自引:0,他引:1  
This paper reports the production of monoterpenes, which elicit a floral aroma in wine, by strains of the yeast Saccharomyces cerevisiae. Terpenes, which are typical components of the essential oils of flowers and fruits, are also present as free and glycosylated conjugates amongst the secondary metabolites of certain wine grape varieties of Vitis vinifera. Hence, when these compounds are present in wine they are considered to originate from grape and not fermentation. However, the biosynthesis of monoterpenes by S. cerevisiae in the absence of grape derived precursors is shown here to be of de novo origin in wine yeast strains. Higher concentration of assimilable nitrogen increased accumulation of linalool and citronellol. Microaerobic compared with anaerobic conditions favored terpene accumulation in the ferment. The amount of linalool produced by some strains of S. cerevisiae could be of sensory importance in wine production. These unexpected results are discussed in relation to the known sterol biosynthetic pathway and to an alternative pathway for terpene biosynthesis not previously described in yeast.  相似文献   

20.
The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-marked strains of the CFBP2098 strain of X. ampelinus for histological studies. We studied the colonization of young plants of V. vinifera cv. Ugni blanc by X. ampelinus after three types of artificial contamination in a growth chamber and in a greenhouse. (i) After wounding of the stem and inoculation, the bacteria progressed down to the crown through the xylem vessels, where they organized into biofilms. (ii) When the bacteria were forced into woody cuttings, they rarely colonized the emerging plantlets. Xylem vessels could play a key role in the multiplication and conservation of the bacteria, rather than being a route for plant colonization. (iii) When bacterial suspensions were sprayed onto the plants, bacteria progressed in two directions: both in emerging organs and down to the crown, thus displaying the importance of epiphytic colonization in disease development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号