首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell cycle regulation is characterized by alternating activities of cyclin-dependent kinases (CDKs) and of the ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). During S-phase APC/C is inhibited by early mitotic inhibitor 1 (Emi1) to allow the accumulation of cyclins A and B and to prevent re-replication. Emi1 is degraded at prophase by a Plk1-dependent pathway. Recent studies in which the degradation pathway of Emi1 was disrupted have shown that APC/C is activated at mitotic entry despite stabilization of Emi1. These results suggested the possibility of additional mechanisms other than degradation of Emi1, which release APC/C from inhibition by Emi1 upon entry into mitosis. In this study we report one such mechanism, by which the ability of Emi1 to inhibit APC/C is negatively regulated by CDKs. We show that in Plk1-inhibited cells Emi1 is stabilized and phosphorylated, that Emi1 is phosphorylated by CDKs in mitotic but not S-phase cell extracts, and that Emi1 phosphorylation by mitotic cell extracts or purified CDKs markedly reduces the ability of Emi1 to bind and to inhibit APC/C. Finally, we show that the addition of extracts from S-phase cells to extracts from mitotic cells protects Emi1 from CDK-mediated inactivation.  相似文献   

2.
The execution of meiotic divisions in Saccharomyces cerevisiae is regulated by anaphase-promoting complex/cyclosome (APC/C)-mediated protein degradation. During meiosis, the APC/C is activated by association with Cdc20p or the meiosis-specific activator Ama1p. We present evidence that, as cells exit from meiosis II, APC/C(Ama1) mediates Cdc20p destruction. APC/C(Ama1) recognizes two degrons on Cdc20p, the destruction box and destruction degron, with either domain being sufficient to mediate Cdc20p destruction. Cdc20p does not need to associate with the APC/C to bind Ama1p or be destroyed. Coimmunoprecipitation analyses showed that the diverged amino-terminal region of Ama1p recognizes both Cdc20p and Clb1p, a previously identified substrate of APC/C(Ama1). Domain swap experiments revealed that the C-terminal WD region of Cdh1p, when fused to the N-terminal region of Ama1p, could direct most of Ama1p functions, although at a reduced level. In addition, this fusion protein cannot complement the spore wall defect in ama1Δ strains, indicating that substrate specificity is also derived from the WD repeat domain. These findings provide a mechanism to temporally down-regulate APC/C(Cdc20) activity as the cells complete meiosis II and form spores.  相似文献   

3.
Regulated protein degradation is essential for eukaryotic cell cycle progression. The anaphase-promoting complex/cyclosome (APC/C) is responsible for the protein destruction required for the initiation of anaphase and the exit from mitosis, including the degradation of securin and B-type cyclins. We initiated a study of the APC/C in the multinucleated, filamentous ascomycete Ashbya gossypii to understand the mechanisms underlying the asynchronous mitosis observed in these cells. These experiments were motivated by previous work which demonstrated that the mitotic cyclin AgClb1/2p persists through anaphase, suggesting that the APC/C may not be required for the division cycle in A. gossypii. We have now found that the predicted APC/C components AgCdc23p and AgDoc1p and the targeting factors AgCdc20p and AgCdh1p are essential for growth and nuclear division. Mutants lacking any of these factors arrest as germlings with nuclei blocked in mitosis. A likely substrate of the APC/C is the securin homologue AgPds1p, which is present in all nuclei in hyphae except those in anaphase. The destruction box sequence of AgPds1p is required for this timed disappearance. To investigate how the APC/C may function to degrade AgPds1p in only the subset of anaphase nuclei, we localized components and targeting subunits of the APC/C. Remarkably, AgCdc23p, AgDoc1p, and AgCdc16p were found in all nuclei in all cell cycle stages, as were the APC/C targeting factors AgCdc20p and AgCdh1p. These data suggest that the AgAPC/C may be constitutively active across the cell cycle and that proteolysis in these multinucleated cells may be regulated at the level of substrates rather than by the APC/C itself.  相似文献   

4.
The ability of Candida albicans to switch cellular morphologies is crucial for its ability to cause infection. Because the cell cycle machinery participates in Saccharomyces cerevisiae filamentous growth, we characterized in detail the two C. albicans B-type cyclins, CLB2 and CLB4, to better understand the molecular mechanisms that underlie the C. albicans morphogenic switch. Both Clb2p and Clb4p levels are cell cycle regulated, peaking at G2/M and declining before mitotic exit. On hyphal induction, the accumulation of the G1 cyclin Cln1p was prolonged, whereas the accumulation of both Clb proteins was delayed when compared with yeast form cells, indicating that CLB2 and CLB4 are differentially regulated in the two morphologies and that the dynamics of cyclin appearance differs between yeast and hyphal forms of growth. Clb2p-depleted cells were inviable and arrested with hyper-elongated projections containing two nuclei, suggesting that Clb2p is not required for entry into mitosis. Unlike Clb2p-depleted cells, Clb4p-depleted cells were viable and formed constitutive pseudohyphae. Clb proteins lacking destruction box domains blocked cell cycle progression resulting in the formation of long projections, indicating that both Clb2p and Clb4p must be degraded before mitotic exit. In addition, overexpression of either B-type cyclin reduced the extent of filamentous growth. Taken together, these data indicate that Clb2p and Clb4p regulate C. albicans morphogenesis by negatively regulating polarized growth.  相似文献   

5.
Cell cycle progression is driven by waves of cyclin expression coupled with regulated protein degradation. An essential step for initiating mitosis is the inactivation of proteolysis mediated by the anaphase-promoting complex/cyclosome (APC/C) bound to its regulator Cdh1p/Hct1p. Yeast APC(Cdh1) was proposed previously to be inactivated at Start by G1 cyclin/cyclin-dependent kinase (CDK). Here, we demonstrate that in a normal cell cycle APC(Cdh1) is inactivated in a graded manner and is not extinguished until S phase. Complete inactivation of APC(Cdh1) requires S phase cyclins. Further, persistent APC(Cdh1) activity throughout G1 helps to ensure the proper timing of Cdc20p expression. This suggests that S phase cyclins have an important role in allowing the accumulation of mitotic cyclins and further suggests a regulatory loop among S phase cyclins, APC(Cdh1), and APC(Cdc20).  相似文献   

6.
Increased cellular ploidy is widespread during developmental processes of multicellular organisms, especially in plants. Elevated ploidy levels are typically achieved either by endoreplication or endomitosis, which are often regarded as modified cell cycles that lack an M phase either entirely or partially. We identified GIGAS CELL1 (GIG1)/OMISSION OF SECOND DIVISION1 (OSD1) and established that mutation of this gene triggered ectopic endomitosis. On the other hand, it has been reported that a paralog of GIG1/OSD1, UV-INSENSITIVE4 (UVI4), negatively regulates endoreplication onset in Arabidopsis thaliana. We showed that GIG1/OSD1 and UVI4 encode novel plant-specific inhibitors of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. These proteins physically interact with APC/C activators, CDC20/FZY and CDH1/FZR, in yeast two-hybrid assays. Overexpression of CDC20.1 and CCS52B/FZR3 differentially promoted ectopic endomitosis in gig1/osd1 and premature occurrence of endoreplication in uvi4. Our data suggest that GIG1/OSD1 and UVI4 may prevent an unscheduled increase in cellular ploidy by preferentially inhibiting APC/C(CDC20) and APC/C(FZR), respectively. Generation of cells with a mixed identity in gig1/osd1 further suggested that the APC/C may have an unexpected role for cell fate determination in addition to its role for proper mitotic progression.  相似文献   

7.
Properly regulated cyclin proteolysis is critical for normal cell cycle progression. A nine-amino acid peptide motif called the destruction box (D box) is present at the N terminus of the yeast mitotic cyclins. This short sequence is required for cyclin ubiquitination and subsequent proteolysis. The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit E3 required for cyclin ubiquitination. We have tested the D box of five mitotic cyclins for interaction with six APC/C subunits. The APC/C subunit Cdc23, but not five other subunits tested, interacted by two-hybrid analysis with the N terminus of wild-type Clb2. None of these subunits interacted with the N termini of the cyclins Clb1, Clb3, or Clb5. Mutations in the D box sequences of Clb2 inhibited interaction with Cdc23 both in vivo and in vitro. Our results provide the first evidence for a direct interaction between an APC/C substrate (Clb2) and an APC/C subunit (Cdc23).  相似文献   

8.
The cyclosome/anaphase promoting complex (APC) is a multisubunit ubiquitin ligase that targets mitotic regulators for degradation in exit from mitosis. It is activated at the end of mitosis by phosphorylation and association with the WD-40 protein Cdc20/Fizzy and is then kept active in the G1 phase by association with Cdh1/Hct1. The mitotic checkpoint system that keeps cells with defective spindles from leaving mitosis interacts with Cdc20 and prevents its stimulatory action on the cyclosome. The activity of Cdh1 is negatively regulated by phosphorylation, while the abundance of Cdc20 is cell cycle regulated, with a peak in M-phase. Cdc20 is also phosphorylated in G2/M and in mitotically arrested cells, but the role of phosphorylation remained unknown. Here we show that phosphorylation of Cdc20 by Cdk1/cyclin B abrogates its ability to activate cyclosome/APC from mitotic HeLa cells. A nonphosphorylatable derivative of Cdc20 stimulates cyclin-ubiquitin ligation in extracts from nocodazole-arrested cells to a much greater extent than does wild-type Cdc20. It is suggested that inhibitory phosphorylation of Cdc20/Fizzy may have a role in keeping the cyclosome inactive in early mitosis and under conditions of mitotic checkpoint arrest.  相似文献   

9.
Cyclin-dependent kinase inhibitor p21Cip1 plays a crucial role in regulating cell cycle arrest and differentiation. It is known that p21Cip1 increases during terminal differentiation of cardiomyocytes, but its expression control and biological roles are not fully understood. Here, we show that the p21Cip1 protein is stabilized in cardiomyocytes after mitogenic stimulation, due to its increased CDK2 binding and inhibition of ubiquitylation. The APC/CCdc20 complex is shown to be an E3 ligase mediating ubiquitylation of p21Cip1 at the N terminus. CDK2, but not CDC2, suppressed the interaction of p21Cip1 with Cdc20, thereby leading to inhibition of anaphase-promoting complex/cyclosome and its activator Cdc20 (APC/CCdc20)-mediated p21Cip1 ubiquitylation. It was further demonstrated that p21Cip1 accumulation caused G2 arrest of cardiomyocytes that were forced to re-enter the cell cycle. Taken together, these data show that the stability of the p21Cip1 protein is actively regulated in terminally differentiated cardiomyocytes and plays a role in inhibiting their uncontrolled cell cycle progression. Our study provides a novel insight on the control of p21Cip1 by ubiquitin-mediated degradation and its implication in cell cycle arrest in terminal differentiation.  相似文献   

10.
Vertebrate oocytes awaiting fertilization are arrested at metaphase of meiosis II by cytostatic factor (CSF). This arrest is due to inhibition of the anaphase-promoting complex/cyclosome, in part by a newly identified protein, Emi2 (xErp1). Emi2 is required for maintenance of CSF arrest in egg extracts, but its function in CSF establishment in oocytes and the normal embryonic cell cycle is unknown. Here we show that during oocyte maturation, Emi2 appears only after metaphase I, and its level peaks at CSF arrest (metaphase II). In M phase, Emi2 undergoes a phosphorylation-dependent electrophoretic shift. Microinjection of antisense oligonucleotides against Emi2 into stage VI oocytes blocks progression through meiosis II and the establishment of CSF arrest. Recombinant Emi2 rescues CSF arrest in these oocytes and also causes CSF arrest in egg extracts and in blastomeres of two-cell embryos. Fertilization triggers rapid, complete degradation of Emi2, but it is resynthesized in the first embryonic cell cycle to reach levels 5-fold lower than during CSF arrest. However, depletion of the protein from cycling egg extracts does not prevent mitotic cell cycle progression. Thus, Emi2 plays an essential role in meiotic but not mitotic cell cycles.  相似文献   

11.
Budding yeast initiates anaphase by activating the Cdc20-dependent anaphase-promoting complex (APC). The mitotic activity of Cdc28 (Cdk1) is required to activate this form of the APC, and mutants that are impaired in mitotic Cdc28 function have difficulty leaving mitosis. This defect can be explained by a defect in APC phosphorylation, which depends on mitotic Cdc28 activity in vivo and can be catalyzed by purified Cdc28 in vitro. Mutating putative Cdc28 phosphorylation sites in three components of the APC, Cdc16, Cdc23, and Cdc27, makes the APC resistant to phosphorylation both in vivo and in vitro. The nonphosphorylatable APC has normal activity in G1, but its mitotic, Cdc20-dependent activity is compromised. These results show that Cdc28 activates the APC in budding yeast to trigger anaphase. Previous reports have shown that the budding yeast Cdc5 homologue, Plk, can also phosphorylate and activate the APC in vitro. We show that, like cdc28 mutants, cdc5 mutants affect APC phosphorylation in vivo. However, although Cdc5 can phosphorylate Cdc16 and Cdc27 in vitro, this in vitro phosphorylation does not occur on in vivo sites of phosphorylation.  相似文献   

12.
The spindle checkpoint is a cell cycle surveillance mechanism that ensures the fidelity of chromosome segregation during mitosis and meiosis. Bub1 is a protein serine-threonine kinase that plays multiple roles in chromosome segregation and the spindle checkpoint. In response to misaligned chromosomes, Bub1 directly inhibits the ubiquitin ligase activity of the anaphase-promoting complex or cyclosome (APC/C) by phosphorylating its activator Cdc20. The protein level and the kinase activity of Bub1 are regulated during the cell cycle; they peak in mitosis and are low in G1/S phase. Here we show that Bub1 is degraded during mitotic exit and that degradation of Bub1 is mediated by APC/C in complex with its activator Cdh1 (APC/C(Cdh1)). Overexpression of Cdh1 reduces the protein levels of ectopically expressed Bub1, whereas depletion of Cdh1 by RNA interference increases the level of the endogenous Bub1 protein. Bub1 is ubiquitinated by immunopurified APC/C(Cdh1) in vitro. We further identify two KEN-box motifs on Bub1 that are required for its degradation in vivo and ubiquitination in vitro. A Bub1 mutant protein with both KEN-boxes mutated is stable in cells but fails to elicit a cell cycle phenotype, indicating that degradation of Bub1 by APC/C(Cdh1) is not required for mitotic exit. Nevertheless, our study clearly demonstrates that Bub1, an APC/C inhibitor, is also an APC/C substrate. The antagonistic relationship between Bub1 and APC/C may help to prevent the premature accumulation of Bub1 during G1.  相似文献   

13.
Meiosis is a specialized form of cell division generating haploid gametes and is dependent upon protein ubiquitylation by the anaphase-promoting complex/cyclosome (APC/C). Accurate control of the APC/C during meiosis is important in all eukaryotic cells and is in part regulated by the association of coactivators and inhibitors. We previously showed that the fission yeast meiosis-specific protein Mes1 binds to a coactivator and inhibits APC/C; however, regulation of the Mes1-mediated APC/C inhibition remains elusive. Here we show how Mes1 distinctively regulates different forms of the APC/C. We study all the coactivators present in the yeast genome and find that only Slp1/Cdc20 is essential for meiosis I progression. However, Fzr1/Mfr1 is a critical target for Mes1 inhibition because fzr1Δ completely rescues the defect on the meiosis II entry in mes1Δ cells. Furthermore, cell-free studies suggest that Mes1 behaves as a pseudosubstrate for Fzr1/Mfr1 but works as a competitive substrate for Slp1. Intriguingly, mutations in the D-box or KEN-box of Mes1 increase its recognition as a substrate by Fzr1, but not by Slp1. Thus Mes1 interacts with two coactivators in a different way to control the activity of the APC/C required for the meiosis I/meiosis II transition.  相似文献   

14.
15.
Page AM  Aneliunas V  Lamb JR  Hieter P 《Genetics》2005,170(3):1045-1062
We have examined the in vivo requirement of two recently identified nonessential components of the budding yeast anaphase-promoting complex, Swm1p and Mnd2p, as well as that of the previously identified subunit Apc9p. swm1Delta mutants exhibit synthetic lethality or conditional synthetic lethality with other APC/C subunits and regulators, whereas mnd2Delta mutants are less sensitive to perturbation of the APC/C. swm1Delta mutants, but not mnd2Delta mutants, exhibit defects in APC/C substrate turnover, both during the mitotic cell cycle and in alpha-factor-arrested cells. In contrast, apc9Delta mutants exhibit only minor defects in substrate degradation in alpha-factor-arrested cells. In cycling cells, degradation of Clb2p, but not Pds1p or Clb5p, is delayed in apc9Delta. Our findings suggest that Swm1p is required for full catalytic activity of the APC/C, whereas the requirement of Mnd2p for APC/C function appears to be negligible under standard laboratory conditions. Furthermore, the role of Apc9p in APC/C-dependent ubiquitination may be limited to the proteolysis of a select number of substrates.  相似文献   

16.
The anaphase-promoting complex/cyclosome (APC/C) is a conserved multisubunit ubiquitin ligase required for the degradation of key cell cycle regulators. The APC/C becomes active at the metaphase/anaphase transition and remains active during G(1) phase. One mechanism linked to activation of the APC/C is phosphorylation. Although many sites of mitotic phosphorylation have been identified in core components of the APC/C, the consequence of any individual phosphorylation event has not been elucidated in vivo. In this study, we show that Hcn1 is an essential core component of the fission yeast APC/C and is critical for maintaining complex integrity. Moreover, Hcn1 is a phosphoprotein in vivo. Phosphorylation of Hcn1 occurs at a single Cdk1 site in vitro and in vivo. Mutation of this site to alanine, but not aspartic acid, compromises APC/C function and leads to a specific defect in the completion of cell division.  相似文献   

17.
Cdh1 is a coactivator of the anaphase-promoting complex/cyclosome (APC/C) and contributes to mitotic exit and G1 maintenance by facilitating the polyubiquitination and subsequent proteolysis of specific substrates. Here, we report that budding yeast Cdh1 is a component of a cell cycle-regulated complex that includes the 14-3-3 homologs Bmh1 and Bmh2 and a previously uncharacterized protein, which we name Acm1 (APC/CCdh1 modulator 1). Association of Cdh1 with Bmh1 and Bmh2 requires Acm1, and the Acm1 protein is cell cycle regulated, appearing late in G1 and disappearing in late M. In acm1Delta strains, Cdh1 localization to the bud neck and association with two substrates, Clb2 and Hsl1, were strongly enhanced. Several lines of evidence suggest that Acm1 can suppress APC/CCdh1-mediated proteolysis of mitotic cyclins. First, overexpression of Acm1 fully restored viability to cells expressing toxic levels of Cdh1 or a constitutively active Cdh1 mutant lacking inhibitory phosphorylation sites. Second, overexpression of Acm1 was toxic in sic1Delta cells. Third, ACM1 deletion exacerbated a low-penetrance elongated-bud phenotype caused by modest overexpression of Cdh1. This bud elongation was independent of the morphogenesis checkpoint, and the combination of acm1Delta and hsl1Delta resulted in a dramatic enhancement of bud elongation and G2/M delay. Effects on bud elongation were attenuated when Cdh1 was replaced with a mutant lacking the C-terminal IR dipeptide, suggesting that APC/C-dependent proteolysis is required for this phenotype. We propose that Acm1 and Bmh1/Bmh2 constitute a specialized inhibitor of APC/CCdh1.  相似文献   

18.
The trimorphic fungus Candida albicans is the leading cause of systemic candidiasis, a disease with poor prognosis affecting immunocompromised individuals. The capacity of C. albicans to transition between morphological states is a key determinant of its ability to cause life-threatening infection. Recently the molecular chaperone heat shock protein 90 (Hsp90) was implicated as a major regulator of temperature-dependent C. albicans morphogenesis; compromising Hsp90 function induces filamentation and relieves repression of Ras1-protein kinase A (PKA) signaling, although the mechanism involved remains unknown. Here we demonstrate that filaments generated by compromise of Hsp90 function are neither pseudohyphae nor hyphae but closely resemble filaments formed in response to cell cycle arrest. Closer examination revealed that these filaments exhibit a delay in mitotic exit mediated by the checkpoint protein Bub2. Furthermore, Hsp90 inhibition also led to a distinct morphology with defects in cytokinesis. We found that the cyclin-dependent kinase Cdc28 was destabilized in response to depletion of Hsp90 and that Cdc28 physically interacts with Hsp90, implicating this major cell cycle regulator as a novel Hsp90 client protein in C. albicans. Taken together, our results suggest that Hsp90 is instrumental in the regulation of cell division during yeast-form growth in C. albicans and exerts its major effects during late cell cycle events.  相似文献   

19.
MDC1 (NFBD1), a mediator of the cellular response to DNA damage, plays an important role in checkpoint activation and DNA repair. Here we identified a cross-talk between the DNA damage response and cell cycle regulation. We discovered that MDC1 binds the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase that controls the cell cycle. The interaction is direct and is mediated by the tandem BRCA1 C-terminal domains of MDC1 and the C terminus of the Cdc27 (APC3) subunit of the APC/C. It requires the phosphorylation of Cdc27 and is enhanced after induction of DNA damage. We show that the tandem BRCA1 C-terminal domains of MDC1, known to directly bind the phosphorylated form of histone H2AX (gamma-H2AX), also bind the APC/C by the same mechanism, as phosphopeptides that correspond to the C termini of gamma-H2AX and Cdc27 competed with each other for the binding to MDC1. Our results reveal a link between the cellular response to DNA damage and cell cycle regulation, suggesting that MDC1, known to have a role in checkpoint regulation, executes part of this role by binding the APC/C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号