首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ma CX  Crowder RJ  Ellis MJ 《Steroids》2011,76(8):750-752
Endocrine therapy has been the most effective treatment modality for hormone receptor positive breast cancer. However, its efficacy has been limited by either de novo or acquired resistance. Recent data indicates that activation of the phosphatidylinositol 3-kinase (PI3K) signaling is associated with the poor outcome luminal B subtype of breast cancer and accompanied by the development of endocrine therapy resistance. Importantly, inhibition of PI3K pathway signaling in endocrine resistant breast cancer cell lines reduces cell survival and improves treatment response to endocrine agents. Interestingly, mutations in PIK3CA, the alpha catalytic subunit of the class IA PI3K, which renders cells dependent on PI3K pathway signaling, is the most common genetic abnormality identified in hormone receptor positive breast cancer. The synthetic lethality observed between estrogen deprivation and PI3K pathway inhibition in estrogen receptor positive (ER+) breast cancer cell lines provides further scientific rational to target both estrogen receptor and the PI3K pathway in order to improve the outcome of ER+ breast cancer.  相似文献   

2.
3.
G0/G1 switch gene 2 (G0S2) is a direct retinoic acid target implicated in cancer biology and therapy based on frequent methylation-mediated silencing in diverse solid tumors. We recently reported that low G0S2 expression in breast cancer, particularly estrogen receptor-positive (ER+) breast cancer, correlates with increased rates of recurrence, indicating that G0S2 plays a role in breast cancer progression. However, the function(s) and mechanism(s) of G0S2 tumor suppression remain unclear. In order to determine potential mechanisms of G0S2 anti-oncogenic activity, we performed genome-wide expression analysis that revealed an enrichment of gene signatures related to PI3K/mTOR pathway activation in G0S2 null cells as compared to G0S2 wild-type cells. G0S2 null cells also exhibited a dramatic decreased sensitivity to PI3K/mTOR pathway inhibitors. Conversely, restoring G0S2 expression in human ER+ breast cancer cells decreased basal mTOR signaling and sensitized the cells to pharmacologic mTOR pathway inhibitors. Notably, we provide evidence here that the increase in recurrence seen with low G0S2 expression is especially prominent in patients who have undergone antiestrogen therapy. Further, ER+ breast cancer cells with restored G0S2 expression had a relative increased sensitivity to tamoxifen. These findings reveal that in breast cancer G0S2 functions as a tumor suppressor in part by repressing PI3K/mTOR activity, and that G0S2 enhances therapeutic responses to PI3K/mTOR inhibitors. Recent studies implicate hyperactivation of PI3K/mTOR signaling as promoting resistance to antiestrogen therapies in ER+ breast cancer. Our data establishes G0S2 as opposing this form of antiestrogen resistance. This promotes further investigation of the role of G0S2 as an antineoplastic breast cancer target and a biomarker for recurrence and therapy response.  相似文献   

4.
Cellular response to estrogen is mediated both by estrogen receptor (ER) binding to estrogen response element (ERE) and by non-nuclear actions like activation of signal transducing pathways. The main aims are to study if PI3K/Akt signaling pathway can be activated by 17beta-estradiol (E2) via non-nuclear action and to investigate the relationship of the action of E2 and ER in endometrial cancer cells expressing with different status of ER. The levels of phosphorylated Akt (Ser473) (P-Akt) and total Akt were examined by western blot and Akt kinase activity was measured in cells after stimulation with 1 microM E2 at different time points. Inhibitory role of LY294002 on activation of Akt induced by E2 and its estrogen antagonist, ICI182780 were also tested. P-Akt/Akt was used as a measure of activation of Akt. We found that maximum P-Akt/Akt and Akt kinase activity took place at 30 min in Ishikawa cells and 15 min in HEC-1A cells and the activation persisted for at least 2 h after stimulation with 1 microM E2. The activation of Akt elicited gradually with increasing doses of E2. PI3K inhibitor, LY294002, stopped the activating Akt in a dose-dependent manner and 50 microM LY294002 completely blocked the activation of Akt induced by E2. ICI182780 could block the activation of PI3K/Akt in ER-positive Ishikawa cells but not in HEC-1A cells with poor-expressed ER. This study demonstrated that E2 is able to promptly activate PI3K/Akt signal pathway in Ishikawa cells in an ER-dependent manner and ER-independent in HEC-1A cells. Blockage of PI3K/Akt cascade may become a potential and effective way to control endometrial carcinoma, especially in ER-negative cancers, which show no response to endocrinal therapy.  相似文献   

5.
Patients with ER/HER2-positive breast cancer have a poor prognosis and are less responsive to selective estrogen receptor modulators; this is presumably due to the crosstalk between ER and HER2. Fatty acid synthase (FASN) is essential for the survival and maintenance of the malignant phenotype of breast cancer cells. An intimate relationship exists between FASN, ER and HER2. We hypothesized that FASN may be the downstream effector underlying ER/HER2 crosstalk through the PI3K/AKT/mTOR pathway in ER/HER2-positive breast cancer. The present study implicated the PI3K/AKT/mTOR pathway in the regulation of FASN expression in ER/HER2-positive breast cancer cells and demonstrated that rapamycin, an mTOR inhibitor, inhibited FASN expression. Cerulenin, a FASN inhibitor, synergized with rapamycin to induce apoptosis and inhibit cell migration and tumorigenesis in ER/HER2-positive breast cancer cells. Our findings suggest that inhibiting the mTOR-FASN axis is a promising new strategy for treating ER/HER2-positive breast cancer.  相似文献   

6.
7.
8.
We explored the crosstalk between cell survival (phosphatidylinositol 3-kinase (PI3K)/Akt) and mitogenic (Ras/Raf/MEK/extracellular signal-regulated kinase (ERK)) signaling pathways activated by an epidermal growth factor (EGF) and analyzed their sensitivity to small molecule inhibitors in the PI3K-mutant estrogen receptor (ER)-positive MCF7 and T47D breast cancer cells. In contrast to MCF7 cells, ERK phosphorylation in T47D cells displayed resistance to MEK inhibition by several structurally different compounds, such as U0126, PD 098059 and PD 198306, MEK suppression by small interfering RNA (siRNA) and was also less sensitive to PI3K inhibition by wortmannin. Similar effect was observed in PI3K-wild type ER-positive BT-474 cells, albeit to a much lesser extent.MEK-independent ERK activation was induced only by ErbB receptor ligands and was resistant to inhibition of several kinases and phosphatases that are known to participate in the regulation of Ras/mitogen-activated protein kinase (MAPK) cascade. Although single agents against PDK1 or Akt did not affect EGF-induced ERK phosphorylation, a combination of PI3K/Akt and MEK inhibitors synergistically suppressed ERK activation and cellular growth. siRNA-mediated silencing of class I PI3K or Akt1/2 genes also significantly decreased U0126-resistant ERK phosphorylation.Our data suggest that in T47D cells ErbB family ligands induce a dynamic, PI3K/Akt-sensitive and MEK-independent compensatory ERK activation circuit that is absent in MCF7 cells. We discuss candidate proteins that can be involved in this activation circuitry and suggest that PDZ-Binding Kinase/T-LAK Cell-Originated Protein Kinase (PBK/TOPK) may play a role in mediating MEK-independent ERK activation.  相似文献   

9.
10.
W Q Zheng  J Lu  J M Zheng  F X Hu  C R Ni 《Steroids》2001,66(12):905-910
OBJECTIVE: Estrogen-dependent growth of breast cancer can be blocked by anti-estrogens. Estrogen receptor (ER) presence in breast cancer implies responsiveness to endocrine therapy. However, for those patients who ultimately develop resistance to endocrine therapy, the mechanisms remain unclear. The present study attempted to compare the expression status of ER mRNA in a series of primary breast tumors with matched metastases and explored the relation between ER and mutant p53 expression. METHODS: In situ hybridization using a digoxigenin-labeled estrogen receptor cDNA probe was employed to determine the expression of ER mRNA in 52 cases of primary tumors and their matched axillary lymph node metastases. Immunohistochemical staining using a monoclonal antibody against ER was also performed. RESULTS: ER expression was observed in 53.8% (28/52) of primary tumors and 48% (25/52) of metastases, while 57.7% (30/52) of primary tumors and 53.8% (28/52) of metastases showed ER mRNA positivity. There were variations in ER status between in situ hybridization and immunohistochemistry measurements and between primary tumors and metastases. Mutant p53 expression was inversely associated with ER-negative, high-grade tumors. CONCLUSIONS: In situ hybridization may be a more specific and sensitive method for determination of ER status than immunohistochemistry. It is possible that the biologic properties of ER change, and these changes may influence tumor response to endocrine therapy. In view of the ER variation, it was suggested that the ER status of metastatic tumors in addition to primary tumors should be taken into consideration in order to better determine the benefit of clinical endocrine therapy.  相似文献   

11.
Approximately 75% of breast tumors express the estrogen receptor (ER), and women with these tumors will receive endocrine therapy. Unfortunately, up to 50% of these patients will fail ER-targeted therapies due to either de novo or acquired resistance. ER-positive tumors can be classified based on gene expression profiles into Luminal A- and Luminal B-intrinsic subtypes, with distinctly different responses to endocrine therapy and overall patient outcome. However, the underlying biology causing this tumor heterogeneity has yet to become clear. This review will explore the role of inflammation as a risk factor in breast cancer as well as a player in the development of more aggressive, therapy-resistant ER-positive breast cancers. First, breast cancer risk factors, such as obesity and mammary gland involution after pregnancy, which can foster an inflammatory microenvironment within the breast, will be described. Second, inflammatory components of the tumor microenvironment, including tumor-associated macrophages and proinflammatory cytokines, which can act on nearby breast cancer cells and modulate tumor phenotype, will be explored. Finally, activation of the nuclear factor κB (NF-κB) pathway and its cross talk with ER in the regulation of key genes in the promotion of more aggressive breast cancers will be reviewed. From these multiple lines of evidence, we propose that inflammation may promote more aggressive ER-positive tumors and that combination therapy targeting both inflammation and estrogen production or actions could benefit a significant portion of women whose ER-positive breast tumors fail to respond to endocrine therapy.  相似文献   

12.
Traditionally, GRP78 has been regarded as an endoplasmic reticulum (ER) lumenal protein due to its carboxyl KDEL retention motif. Recently, a subfraction of GRP78 is found to localize to the surface of specific cell types, serving as co-receptors and regulating signaling. However, the physiological relevance of cell surface GRP78 (sGRP78) expression in cancer and its functional interactions at the cell surface are just emerging. In this report, we combined biochemical, imaging and mutational approaches to address these issues. For detection of sGRP78, we utilized a mouse monoclonal antibody highly potent and specific for GRP78 or epitope-tagged GRP78, coupled with imaging and biochemical techniques that allowed detection of sGRP78 but not intracellular GRP78. Our studies revealed that breast and prostate cancer cells resistant to hormonal therapy actively promote GRP78 to the cell surface, which can be further elevated by a variety of ER stress-inducing conditions. We showed that sGRP78 forms complex with PI3K, and overexpression of sGRP78 promotes PIP3 formation, indicative of PI3K activation. We further discovered that an insertion mutant of GRP78 at its N-terminus domain, while retaining stable expression and the ability to translocate to the cell surface as the wild-type protein, exhibited reduced complex formation with p85 and production of PIP3. Thus, our studies provide a mechanistic explanation for the regulation of the PI3K/AKT signaling by sGRP78. Our findings suggest that targeting sGRP78 may suppress therapeutic resistance in cancer cells and offer a novel strategy to suppress PI3K activity.  相似文献   

13.
AND-34, a 95-kDa protein with modest homology to Ras GDP exchange factors, associates with the focal adhesion protein p130Cas. Overexpression of AND-34 confers anti-estrogen resistance in breast cancer cell lines, a property linked to its ability to activate Rac. Here, we show that both the GDP exchange factor-like domain and the SH2 domain of AND-34 are required for Rac activation and for resistance to the estrogen receptor (ER) antagonist ICI 182,780. As phosphatidylinositol 3-kinase (PI3K) signaling can regulate Rac activation, we examined the effects of AND-34 on PI3K. Overexpression of AND-34 in MCF-7 cells increased PI3K activity and augmented Akt Ser(473) phosphorylation and kinase activity. Inhibition of PI3K with LY294002 or a dominant-negative p85 construct blocked AND-34-mediated Rac and Akt activation. Although R-Ras can activate PI3K, transfection with constitutively active R-Ras failed to induce Rac activation and AND-34 overexpression failed to induce R-Ras activation. Treatment of either vector-only or AND-34-transfected ZR-75-1 cells with ICI 182,780 markedly diminished ERalpha levels, suggesting that AND-34-induced anti-estrogen resistance is likely to occur by an ERalpha-independent mechanism. Treatment of a ZR-75-1 breast cancer cell line stably transfected with AND-34 plus 2 micromol/L LY294002 or 10 micromol/L NSC23766, a Rac-specific inhibitor, abrogated AND-34-induced resistance to ICI 182,780. Our studies suggest that AND-34-mediated PI3K activation induces Rac activation and anti-estrogen resistance in human breast cancer cell lines.  相似文献   

14.
Biswas DK  Cruz AP  Pardee AB 《BioTechniques》2000,29(5):1056-60, 1062-4
The level of estrogen receptor (ER) is a key determinant for the management of ER-positive [ER(+)] breast cancer patients. Growth of many human breast cancers is regulated by estrogen (E2) and progesterone (Pr). Generally, the ER in ER(+) breast cancer patients is targeted for therapy with antihormones. However 40% of ER(+) patients do not respond to antihormone therapy. Thus, the identification of antihormone resistant ER(+) breast cancers is essential for therapeutic predictions. Although 3H-E2 binding and immunodetection can identify ER, these procedures do not assess the functional state of the receptor molecule. In this study we describe a novel and rapid assay for the detection of ER and its functional state on the basis of the downstream interaction with its response element (ERE) based on the preferential binding of DNA-protein complex (ERE-ER) to a nitrocellulose membrane (NMBA). This method permits measurement of both the total and the functional fraction of ER. The ER status was examined in breast cancer cell lines and in breast cancer biopsy specimens by (i) 3H-E2 binding assay, (ii) immunodetection assays and (iii) by its interaction with 32P-ERE. The sensitive NMBA assay was validated with well-characterized ER(+) breast cancer cell lines and also identified functional variants of ER among breast tumor biopsy specimens.  相似文献   

15.
Estrogen stimulates cell proliferation in breast cancer. The biological effects of estrogen are mediated through two intracellular receptors, estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta). However, the role of ERs in the proliferative action of estrogen is not well established. Recently, it has been known that ER activates phosphatidylinositol-3-OH kinase (PI3K) through binding with the p85 regulatory subunit of PI3K. Therefore, possible mechanisms may include ER-mediated phosphoinositide metabolism with subsequent formation of phosphatidylinositol-3,4,5-trisphosphate (PIP(3)), which is generated from phosphatidylinositol 4,5-bisphosphate via PI3K activation. The present study demonstrates that 17beta-estradiol (E2) up-regulates PI3K in an ERalpha-dependent manner, but not ERbeta, and stimulates cell growth in breast cancer cells. In order to study this phenomenon, we have treated ERalpha-positive MCF-7 cells and ERalpha-negative MDA-MB-231 cells with 10nM E2. Treatment of MCF-7 cells with E2 resulted in a marked increase in PI3K (p85) expression, which paralleled an increase in phospho-Akt (Ser-473) and PIP(3) level. These observations also correlated with an increased activity to E2-induced cell proliferation. However, these effects of E2 on breast cancer cells were not observed in the MDA-MB-231 cell line, indicating that the E2-mediated up-regulation of PI3K/Akt pathway is ERalpha-dependent. These results suggest that estrogen activates PI3K/Akt signaling through ERalpha-dependent mechanism in MCF-7 cells.  相似文献   

16.
Tamoxifen (TAM) resistance has indicated a significant challenge during endocrine therapy for hormone-sensitive breast cancer. Thus, it is significant to elucidate the molecular events endowing TAM resistance to endocrine therapy. In this study, we found that epithelial-mesenchymal transition (EMT) was an important event to confer TAM resistance, and attenuating EMT by elevating connexin (Cx) 43 expression could reverse TAM resistance. Specifically, Cx43 overexpression improved TAM sensitivity, while Cx43 depletion facilitated TAM insensitivity by modulating EMT in T47D TAM-resistant and -sensitive cells, and transplanted xenografts. Importantly, we found a novel reciprocal regulation between Cx43 and c-Src/PI3K/Akt pathway contributing to EMT and TAM resistance in breast cancer. Moreover, we identified that Cx43 deficiency was significantly correlated with poor relapse-free survival in patients undergoing TAM treatment. Therefore, Cx43 represents a prognostic marker and an attractive target for breast cancer treatments. Therapeutic strategies designed to increase or maintain Cx43 function may be beneficial to overcome TAM resistance.  相似文献   

17.
Quite a few estrogen receptor (ER)‐positive breast cancer patients receiving endocrine therapy are at risk of disease recurrence and death. ER‐related genes are involved in the progression and chemoresistance of breast cancer. In this study, we identified an ER‐related gene signature that can predict the prognosis of ER‐positive breast cancer patient receiving endocrine therapy. We collected RNA expression profiling from Gene Expression Omnibus database. An ER‐related signature was developed to separate patients into high‐risk and low‐risk groups. Patients in the low‐risk group had significantly better survival than those in the high‐risk group. ROC analysis indicated that this signature exhibited good diagnostic efficiency for the 1‐, 3‐ and 5‐year disease‐relapse events. Moreover, multivariate Cox regression analysis demonstrated that the ER‐related signature was an independent risk factor when adjusting for several clinical signatures. The prognostic value of this signature was validated in the validation sets. In addition, a nomogram was built and the calibration plots analysis indicated the good performance of this nomogram. In conclusion, combining with ER status, our results demonstrated that the ER‐related prognostic signature is a promising method for predicting the prognosis of ER‐positive breast cancer patients receiving endocrine therapy.  相似文献   

18.
19.
《Autophagy》2013,9(12):1827-1829
Breast cancer is one of the most prevalent cancers in women, with more than 240,000 new cases reported in the United States in 2011. Classification of breast cancer based upon hormone and growth factor receptor profiling shows that approximately 70% of all breast cancers express estrogen receptor-α. Thus, drugs that either block estrogen biosynthesis (aromatase inhibitors like Letrozole), or compete with estrogen for estrogen receptor (ER) binding (selective ER modulators including tamoxifen; TAM) and/or cause ER degradation (selective estrogen receptor downregulators such as fulvestrant), are among the most prescribed targeted therapeutics for breast cancer. However, overall clinical benefit from the use of these drugs is often limited by resistance; ER+ breast cancers either fail to respond to endocrine therapies initially (de novo resistance), or they respond and then lose sensitivity over time (acquired resistance). While several preclinical studies postulate how antiestrogen resistance occurs, for the most part, the molecular mechanism(s) of resistance is unknown.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号