首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asthmatics are more susceptible to influenza infections, yet mechanisms mediating this enhanced susceptibility are unknown. Influenza virus hemagglutinin (HA) protein binds to sialic acid residues on the host cells. HA requires cleavage to allow fusion of the viral HA with host cell membrane, which is mediated by host trypsin-like serine protease. We show data here demonstrating that the protease:antiprotease ratio is increased in the nasal mucosa of asthmatics and that these changes were associated with increased proteolytic activation of influenza. These data suggest that disruption of the protease balance in asthmatics enhances activation and infection of influenza virus.  相似文献   

2.
For influenza viruses to become infectious, the proteolytic cleavage of hemagglutinin (HA) is essential. This usually is mediated by trypsin-like proteases in the respiratory tract. The binding of plasminogen to influenza virus A/WSN/33 leads to the cleavage of HA, a feature determining its pathogenicity and neurotropism in mice. Here, we demonstrate that plasminogen also promotes the replication of other influenza virus strains. The inhibition of the conversion of plasminogen into plasmin blocked influenza virus replication. Evidence is provided that the activation of plasminogen is mediated by the host cellular protein annexin II, which is incorporated into the virus particles. Indeed, the inhibition of plasminogen binding to annexin II by using a competitive inhibitor inhibits plasminogen activation into plasmin. Collectively, these results indicate that the annexin II-mediated activation of plasminogen supports the replication of influenza viruses, which may contribute to their pathogenicity.  相似文献   

3.
Cleavage of influenza A virus hemagglutinin (HA) is required for expression of fusion activity and virus entry into cells. Extracellular proteases are responsible for the proteolytic cleavage activation of avirulent avian and mammalian influenza viruses and contribute to pathogenicity and tissue tropism. The relative contributions of host and microbial proteases to cleavage activation in natural infection remain to be established. We examined 23 respiratory bacterial pathogens and 150 aerobic bacterial isolates cultured from the nasal cavities of pigs for proteolytic activity. No evidence of secreted proteases was found for the bacterial pathogens, including Haemophilus parasuis, Pasteurella multocida, Actinobacillus pleuropneumoniae, Bordetella bronchiseptica, and Streptococcus suis. Proteolytic bacteria were isolated from 7 of 11 swine nasal samples and included Staphylococcus chromogenes, Staphylococcus hyicus, Aeromonas caviae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Enterococcus sp. Only P. aeruginosa secreted a protease, elastase, that cleaved influenza virus HA. However, compared to trypsin, the site of cleavage by elastase was shifted one amino acid in the carboxy-terminal direction and resulted in inactivation of the virus. Under the conditions of this study, we identified several bacterial isolates from the respiratory tracts of pigs that secrete proteases in vitro. However, none of these proteolytic isolates demonstrated direct cleavage activation of influenza virus HA.  相似文献   

4.
A critical step in the influenza virus replication cycle is the cleavage activation of the HA precursor. Cleavage activation of influenza HA enables fusion with the host endosome, allowing for release of the viral genome into the host cell. To date, studies have determined that HA activation is driven by trypsin-like host cell proteases, as well as yet to be identified bacterial proteases. Although the number of host proteases that can activate HA is growing, there is still uncertainty regarding which secreted proteases are able to support multicycle replication of influenza. In this study, we have determined that the kallikrein-related peptidases 5 and 12 are secreted from the human respiratory tract and have the ability to cleave and activate HA from the H1, H2, and H3 subtypes. Each peptidase appears to have a preference for particular influenza subtypes, with kallikrein 5 cleaving the H1 and H3 subtypes most efficiently and kallikrein 12 cleaving the H1 and H2 subtypes most efficiently. Cleavage analysis using HA cleavage site peptide mimics revealed that the amino acids neighboring the arginine cleavage site affect cleavage efficiency. Additionally, the thrombolytic zymogens plasminogen, urokinase, and plasma kallikrein have all been shown to cleave and activate influenza but are found circulating mainly as inactive precursors. Kallikrein 5 and kallikrein 12 were examined for their ability to activate the thrombolytic zymogens, and both resulted in activation of each zymogen, with kallikrein 12 being a more potent activator. Activation of the thrombolytic zymogens may therefore allow for both direct and indirect activation of the HA of human-adapted influenza viruses by kallikrein 5 and kallikrein 12.  相似文献   

5.
R Ohuchi  M Ohuchi  W Garten    H D Klenk 《Journal of virology》1991,65(7):3530-3537
To examine the prerequisites for cleavage activation of the hemagglutinin of human influenza viruses, a cDNA clone obtained from strain A/Port Chalmers/1/73 (serotype H3) was subjected to site-directed mutagenesis and expressed in CV-1 cells by using a simian virus 40 vector. The number of basic residues at the cleavage site, which consists of a single arginine with wild-type hemagglutinin, was increased by inserting two, three, or four additional arginines. Like wild-type hemagglutinin, mutants with up to three additional arginines were not cleaved in CV-1 cells, but insertion of four arginines resulted in activation. When the oligosaccharide at asparagine 22 of the HA1 subunit of the hemagglutinin was removed by site-directed mutagenesis of the respective glycosylation site, only three inserted arginines were required to obtain cleavage. Mutants containing a series of four basic residues were also generated by substituting arginine for uncharged amino acids immediately preceding the cleavage site. The observation that these mutants were not cleaved, even when the carbohydrate at asparagine 22 of HA1 was absent, underscores the fact that the basic peptide had to be generated by insertion to obtain cleavage. The data show that the hemagglutinin of a human influenza virus can acquire high cleavability, a property known to be an important determinant for the pathogenicity of avian influenza viruses. Factors important for cleavability are the number of basic residues at the cleavage site, the oligosaccharide at asparagine 22, and the length of the carboxy terminus of HA1.  相似文献   

6.
Cleavage activation of the hemagglutinin (HA) precursor is an essential step in the influenza virus replication cycle that is driven by host cell proteases. HA cleavage activation is required for virus-endosome membrane fusion and the subsequent release of the influenza virus genome into the cytoplasm. Previous studies have determined that HA cleavage is most likely driven by either membrane-bound or extracellular trypsin-like proteases that reside in the respiratory tract. However, there is still uncertainty regarding which proteases are critical for HA cleavage in vivo. Therefore, further investigation of HA cleavage activation is needed in order to gain insight into the critical proteases involved. Matriptase is a member of the type II transmembrane serine protease family that is highly expressed in a membrane-bound form throughout the respiratory tract. One feature of matriptase is that, once activated, the catalytic domain is secreted into the extracellular space and so serves as a functional extracellular protease. In this study, we have determined that the secreted, catalytic domain of matriptase has the ability to cleave and activate HA from the influenza virus H1 subtype but not the H2 and H3 subtypes. Furthermore, matriptase selectively cleaved the HA of particular strains within the H1 subtype, revealing both subtype and H1 strain specificity. Matriptase was also found to activate thrombolytic zymogens that have been shown to cleave and activate the influenza virus HA. Our data demonstrate that matriptase has the ability to cleave HA directly or indirectly by activating HA-cleaving zymogens.  相似文献   

7.
Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.  相似文献   

8.
Proteolytic cleavage of the hemagglutinin (HA) of human influenza viruses A/Aichi/2/68 (H3N2) and A/WSN/34 (H1N1) from HA0 to HA1/HA2 was studied in primary human adenoid epithelial cells (HAEC). HAEC contain a mixture of ciliated and nonciliated secretory cells and mimic the epithelium membrane of the human respiratory tract. Pulse-chase labeling with [(35)S]methionine and Western blot analysis with anti-HA antibodies of cellular and virion polypeptides showed that HAEC cleaved newly synthesized HA0 to HA1/HA2 ("cleavage from within") and significant amounts of cleaved HA accumulated within cells. It was also shown that HAEC was able to cleave HA0 of incoming virions ("cleavage from without"), whereas the HA0 of nonabsorbed virions free in extracellular fluid were not cleaved, supporting the conclusion that HA0 cleavage in HAEC is cell associated. Low-molecular-weight inhibitors of serine proteases, aprotinin and leupeptin, when added to influenza virus-infected HAEC suppressed HA0 cleavage and reduced the amount of cleaved HA1/HA2 both in cells and in progeny virions and thus diminished the infectivity of the virus. In contrast, the addition of fetal bovine serum, containing a number of high-molecular-weight antiproteases that compete for proteases in the extracellular environment, did not inhibit influenza virus growth in HAEC. These data suggest that in human respiratory epithelium the cleavage of influenza virus HA containing a single arginine in the proteolytic site (i) is a cell-associated process accomplished by serine-type protease(s) and (ii) is sensitive to low-molecular-weight exogenous inhibitors of serine proteases.  相似文献   

9.
An H7N3 avian influenza virus (AIV) was isolated from a Cinnamon Teal (Anas cyanoptera) (A/CinnamonTeal/Bolivia/4537/01) during a survey of wild waterfowl in Bolivia in 2001. The NA and M genes had the greatest identity with North American wild bird isolates, the NS was most closely related to an equine virus, and the remaining genes were most closely related to isolates from an outbreak of H7N3 in commercial poultry in Chile in 2002. The HA protein cleavage site and the results of pathogenesis studies in chickens were consistent with a low-pathogenicity virus, and the infective dose was 10(5) times higher for chickens than turkeys.  相似文献   

10.
Kesic MJ  Meyer M  Bauer R  Jaspers I 《PloS one》2012,7(4):e35108
Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility.  相似文献   

11.
Annual influenza epidemics and occasional pandemics pose a severe threat to human health. Host cell factors required for viral spread but not for cellular survival are attractive targets for novel approaches to antiviral intervention. The cleavage activation of the influenza virus hemagglutinin (HA) by host cell proteases is essential for viral infectivity. However, it is unknown which proteases activate influenza viruses in mammals. Several candidates have been identified in cell culture studies, leading to the concept that influenza viruses can employ multiple enzymes to ensure their cleavage activation in the host. Here, we show that deletion of a single HA-activating protease gene, Tmprss2, in mice inhibits spread of mono-basic H1N1 influenza viruses, including the pandemic 2009 swine influenza virus. Lung pathology was strongly reduced and mutant mice were protected from weight loss, death and impairment of lung function. Also, after infection with mono-basic H3N2 influenza A virus body weight loss and survival was less severe in Tmprss2 mutant compared to wild type mice. As expected, Tmprss2-deficient mice were not protected from viral spread and pathology after infection with multi-basic H7N7 influenza A virus. In conclusion, these results identify TMPRSS2 as a host cell factor essential for viral spread and pathogenesis of mono-basic H1N1 and H3N2 influenza A viruses.  相似文献   

12.
Extracellular cleavage of virus envelope fusion glycoprotein hemagglutinin (HA0) by host trypsin-like proteases is a prerequisite for the infectivity and pathogenicity of human influenza A viruses and Sendai virus. The common epidemic influenza A viruses are pneumotropic, but occasionally cause encephalopathy or encephalitis, although the HA0 processing enzyme in the brain has not been identified. In searching for the brain processing proteases, we identified a processing enzyme in rat brain that was inducible by infection with these viruses. The purified enzyme exhibited an apparent molecular mass of approximately 22 kDa on SDS-PAGE and the N-terminal amino acid sequence was consistent with that of rat pancreatic trypsin I. Its substrate specificities and inhibition profiles were the same as those of pancreatic trypsin I. In situ hybridization and immunohistochemical studies on trypsin I distribution revealed heavy deposits in the brain capillaries, particularly in the allocortex, as well as in clustered neuronal cells of the hippocampus. The purified enzyme efficiently processed the HA0 of human influenza A virus and the fusion glycoprotein precursor of Sendai virus. Our results suggest that trypsin I in the brain potentiates virus multiplication in the pathogenesis and progression of influenza-associated encephalopathy or encephalitis.  相似文献   

13.
Avian influenza virus H9N2 is prevalent in waterfowl and has become endemic in poultry in Asia and the Middle East. H9N2 influenza viruses have served as a reservoir of internal genes for other avian influenza viruses that infect humans, and several cases of human infection by H9N2 influenza viruses have indicated its pandemic potential. Fortunately, an extensive surveillance program enables close monitoring of H9N2 influenza viruses worldwide and has generated a large repository of virus sequences and phylogenetic information. Despite the large quantity of sequences in different databases, very little is known about specific virus isolates and their pathogenesis. Here, we characterize a low-pathogenicity avian influenza virus, A/chicken/Israel/810/2001 (H9N2) (Israel810), which is representative of influenza virus strains that have caused severe morbidity and mortality in poultry farms. We show that under certain circumstances the Israel810 hemagglutinin (HA) can be activated by furin, a hallmark of highly pathogenic avian influenza virus. We demonstrate that Israel810 HA can be cleaved in cells with high levels of furin expression and that a mutation that eliminates a glycosylation site in HA1 allows the Israel810 HA to gain universal cleavage in cell culture. Pseudoparticles generated from Israel810 HA, or the glycosylation mutant, transduce cells efficiently. In contrast, introduction of a polybasic cleavage site into Israel810 HA leads to pseudoviruses that are compromised for transduction. Our data indicate a mechanism for an H9N2 evolutionary pathway that may allow it to gain virulence in a distinct manner from H5 and H7 influenza viruses.  相似文献   

14.
We surveyed the genetic diversity among avian influenza virus (AIV) in wild birds, comprising 167 complete viral genomes from 14 bird species sampled in four locations across the United States. These isolates represented 29 type A influenza virus hemagglutinin (HA) and neuraminidase (NA) subtype combinations, with up to 26% of isolates showing evidence of mixed subtype infection. Through a phylogenetic analysis of the largest data set of AIV genomes compiled to date, we were able to document a remarkably high rate of genome reassortment, with no clear pattern of gene segment association and occasional inter-hemisphere gene segment migration and reassortment. From this, we propose that AIV in wild birds forms transient "genome constellations," continually reshuffled by reassortment, in contrast to the spread of a limited number of stable genome constellations that characterizes the evolution of mammalian-adapted influenza A viruses.  相似文献   

15.
In the infectious entry pathway of influenza virus, the low pH of the endosomal compartment induces an irreversible conformational change in influenza virus hemagglutinin, leading to fusion of viral and endosomal membranes. In the current report, we characterized the low-pH-induced activation of hemagglutinin of influenza strain X31 by studying its interaction with a lipid monolayer. The surface activities of virions, of isolated hemagglutinins and its proteolytic fragments, and of a synthetic peptide mimicking the amino terminus of subunit 2 of hemagglutinin are compared. The data indicate that the surface activity of both virions and isolated hemagglutinin develop as a result of the low-pH-induced conformational change in hemagglutinin. The surface activity of isolated hemagglutinin is mainly caused by penetration into the lipid monolayer of protein domains other than the amino terminus of subunit 2 of hemagglutinin; domains in subunit 1 may be involved. The surface activity of virions appears to be a secondary effect of the conformational change and is explained by assuming a net transfer of viral lipids to the lipid monolayer.  相似文献   

16.
Pigs are important natural hosts of influenza A viruses, and due to their susceptibility to swine, avian, and human viruses, they may serve as intermediate hosts supporting adaptation and genetic reassortment. Cleavage of the influenza virus surface glycoprotein hemagglutinin (HA) by host cell proteases is essential for viral infectivity. Most influenza viruses, including human and swine viruses, are activated at a monobasic HA cleavage site, and we previously identified TMPRSS2 and HAT to be relevant proteases present in human airways. We investigated the proteolytic activation of influenza viruses in primary porcine tracheal and bronchial epithelial cells (PTEC and PBEC, respectively). Human H1N1 and H3N2 viruses replicated efficiently in PTECs and PBECs, and viruses containing cleaved HA were released from infected cells. Moreover, the cells supported the proteolytic activation of HA at the stage of entry. We found that swine proteases homologous to TMPRSS2 and HAT, designated swTMPRSS2 and swAT, respectively, were expressed in several parts of the porcine respiratory tract. Both proteases cloned from primary PBECs were shown to activate HA with a monobasic cleavage site upon coexpression and support multicycle replication of influenza viruses. swAT was predominantly localized at the plasma membrane, where it was present as an active protease that mediated activation of incoming virus. In contrast, swTMPRSS2 accumulated in the trans-Golgi network, suggesting that it cleaves HA in this compartment. In conclusion, our data show that HA activation in porcine airways may occur by similar proteases and at similar stages of the viral life cycle as in human airways.  相似文献   

17.
In the second half of 2005, a large-scale outbreak of influenza in poultry and wild birds was caused by a highly pathogenic H5N1 influenza virus in Russia. The level of pathogenicity is a polygenic trait, and most individual genes contribute to the influenza A virus pathogenicity in birds, animals, and humans. The full-length nucleotide sequences were determined for H5N1 strains isolated in the Kurgan region (Western Siberia). The structure of viral proteins was analyzed using the deduced amino acid sequences. The receptor-binding site of hemagglutinin (HA) in strains A/chicken/Kurgan/05/2005 and A/duck/Kurgan/08/2005 was typical for avian influenza viruses and contained Glu and Gly at positions 226 and 228, respectively. The structure of the basic amino acid cluster located within the HA cleavage site was identical in all isolates: QGERRRKKR. According to the neuraminidase structure, all H5N1 isolates from the Kurgan region were assigned to the Z genotype. Amino acid residues typical for the avian influenza virus were revealed in 30 out of 32 positions of M1, M2, NP, PA, and PB2, determining the host range specificity. One of the strains contained Lys at position 627 of PB2. Isolates from the Kurgan region were shown to have a remantadine-sensitive genotype. Both strains contained Glu at position 92 of NS1, indicating that the virus is interferon-resistant. Phylogenetic analysis related the Kurgan isolates to subclade 2 of clade 2 of highly pathogenic H5N1 influenza viruses.  相似文献   

18.
ts5, a temperature-sensitive mutant of influenza B virus, belongs to one of seven recombination groups. When the mutant infected MDCK cells at the nonpermissive temperature (37.5 degrees C), infectious virus was produced at very low levels compared with the yield at the permissive temperature (32 degrees C) and hemagglutinating and enzymatic activities were undetectable. However, viral protein synthesis and transport of hemagglutinin (HA) and neuraminidase (NA) to the cell surface were not affected. The NA was found as a monomer within cells even at 32 degrees C, in contrast to wild-type virus NA, existing mostly as an oligomer, but the mutant had oligomeric NA, like the wild-type virus. Its enzymatic activity was more thermolabile than that of wild-type virus. Despite the low yield, large aggregates of progeny virus particles were found to accumulate on the cell surface at the nonpermissive temperature, and these aggregates were broken by treatment with bacterial neuraminidase, with the concomitant appearance of hemagglutinating activity, suggesting that NA prevents the aggregation of progeny virus by removal of neuraminic acid from HA and cell receptor, allowing its release from the cells. Further treatment with trypsin resulted in the recovery of infectivity. When bacterial NA was added to the culture early in infection, many hemagglutinable infectious virus was produced. We also suggest that the removal of neuraminic acid from HA by NA is essential for the subsequent cleavage of HA by cellular protease. Nucleotide sequence analysis of RNA segment 6 revealed that ts5 encoded five amino acid changes in the NA molecule but not in NB.  相似文献   

19.
A polypeptide fragment obtained by CNBr cleavage of the hemagglutinin from A/JAPAN/305/57 influenza virus has been purified by using high performance liquid chromatography. The first five N-terminal amino acids as determined by sequential Edman degradations have localized this peptide to the HA2 subunit of the hemagglutinin between residues 103 and 123. This peptide, denoted HA2(103-23), can generate both proliferative and cytolytic responses from spleen cells of BALB/c mice previously immunized with A/JAPAN/305/57. These results demonstrate that a single nonglycosylated fragment of the influenza hemagglutinin as small as 21 amino acid residues is capable of being recognized as an antigenic determinant to generate influenza CTL from primed precursors.  相似文献   

20.
血凝素(Hemagglutinin,HA)是流感病毒的主要表面抗原之一,诱导机体产生中和抗体,介导病毒囊膜与靶细胞膜融合,从而启动病毒对宿主细胞的感染过程。HA蛋白以前体形式合成,需经宿主蛋白酶水解为HA1、HA2两个亚单位,并以二硫键连接,病毒才获得感染性。研究表明宿主蛋白酶的分布与流感病毒感染后的致病力和组织嗜性有直接关系。潜在的裂解酶及其抑制因子的发现为流感的防治提供了新的思路,成为干预治疗的新潜在靶点。就当前国内外关于流感病毒血凝素的结构与功能、裂解机制及其应用的研究进展进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号