首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Apicomplexans are obligate intracellular parasites and occupy diverse niches. They have remodeled mitochondrial carbon and energy metabolism through reductive evolution. Plasmodium lacks mitochondrial pyruvate dehydrogenase and H+-translocating NADH dehydrogenase (Complex I, NDH1). The mitochondorion contains a minimal mtDNA (~ 6 kb) and carries out oxidative phosphorylation in the insect vector stages, by using 2-oxoglutarate as an alternative means of entry into the TCA cycle and a single-subunit flavoprotein as an alternative NADH dehydrogenase (NDH2). In the blood stages of mammalian hosts, mitochondrial enzymes are down-regulated and parasite energy metabolism relies mainly on glycolysis. Mitosomes of Cryptosporidium parvum and Cryptosporidium hominis (human intestine parasites) lack mtDNA, pyruvate dehydrogenase, TCA cycle enzymes except malate-quinone oxidoreductase (MQO), and ATP synthase subunits except α and β. In contrast, mitosomes of Cryptosporidium muris (a rodent gastric parasite) retain all TCA cycle enzymes and functional ATP synthase and carry out oxidative phosphorylation with pyruvate-NADP+ oxidoreductase (PNO) and a simple and unique respiratory chain consisting of NDH2 and alternative oxidase (AOX). Cryptosporidium and Perkinsus are early branching groups of chromoalveolates (apicomplexa and dinoflagellates, respectively), and both Cryptosporidium mitosome and Perkinsus mitochondrion use PNO, MQO, and AOX. All apicomplexan parasites and dinoflagellates share MQO, which has been acquired from ε-proteobacteria via lateral gene transfer. By genome data mining on Plasmodium, Cryptosporidium and Perkinsus, here we summarized their mitochondrial metabolic pathways, which are varied largely from those of mammalian hosts. We hope that our findings will help in understanding the apicomplexan metabolism and development of new chemotherapeutics with novel targets.  相似文献   

2.
Microsporidia, a large group of fungi-related protozoa with an obligate intracellular lifestyle, are characterized by a drastically reduced cell machinery and a unique metabolism. These parasites possess genes encoding glycolysis components and glycerol-phosphate shuttle, but lack typical mitochondria, Krebs cycle, respiratory chain and pyruvate-converting enzymes, except for two subunits of the E(1) enzyme of the pyruvate dehydrogenase complex. This study demonstrates that in spite of the above, destroyed spores of the microsporidian Paranosema (Antonospora) grylli and P. locustae deplete pyruvate content in the incubation medium. This activity is sensitive to heat, proportionally distributed between the soluble and the insoluble fractions and does not depend on additional ions or cofactors.  相似文献   

3.
Defects in mitochondrial oxidative metabolism, in particular decreased activity of cytochrome c oxidase, have been reported in Alzheimer disease tissue and in cultured cells that overexpress amyloid precursor protein. Mitochondrial dysfunction contributes to neurodegeneration in Alzheimer disease partly through formation of reactive oxygen species and the release of sequestered molecules that initiate programmed cell death pathways. The heat shock proteins (HSP) are cytoprotective against a number of stressors, including accumulations of misfolded proteins and reactive oxygen species. We reported on the property of Hsp70 to protect cultured neurons from cell death caused by intraneuronal beta-amyloid. Here we demonstrate that Hsp60, Hsp70, and Hsp90 both alone and in combination provide differential protection against intracellular beta-amyloid stress through the maintenance of mitochondrial oxidative phosphorylation and functionality of tricarboxylic acid cycle enzymes. Notably, beta-amyloid was found to selectively inhibit complex IV activity, an effect selectively neutralized by Hsp60. The combined effect of HSPs was to reduce the free radical burden, preserve ATP generation, decrease cytochrome c release, and prevent caspase-9 activation, all important mediators of beta-amyloid-induced neuronal dysfunction and death.  相似文献   

4.
A long adaptation of Microsporidia to intracellular development supposes the host-derived ATP dependence of merogony and sporogony stages. To prove this assumption the activities of ten carbohydrate and energy metabolism enzymes were compared in the microsporidia Nosema grylli intracellular stages and mature spores. This species infects the fat body of crickets Gryllus bimaculatus. We have demonstrated lower activities of glycolytic enzymes, phosphoglucomutase and glucose-6-PhDH in the metabolically active meronts and sporonts than in the dormant mature spores. Low glycolysis level indicates that carbohydrate catabolism is not a principal mechanism of ATP supply in the N. grylli intracellular stages. Furthermore, we have not revealed a preferable expenditure of glycogen in comparison with triglycerides in infected cricket fat bodies. The N. grylli infection causes an equal reduction of glycogen and lipid content approximately in 2-3 times. Microsporidia have not mitochondria, Krebs cycle and electron-transport chain. Therefore they are not able to utilise fat reserves for ATP production. It seems to be proposed that microsporidia consume exogenous ATP which is produced by host cell metabolic system. The N. grylli infection provokes an increase of ATP content and ratio of ATP/ADP concentrations in cricket fat bodies approximately in 4 times. These data indicates a rise of host cell energy metabolism rate during the infection.  相似文献   

5.
The expression of genes encoding various enzymes participating in photosynthetic and respiratory metabolism is regulated by light via the phytochrome system. While many photosynthetic, photorespiratory and some respiratory enzymes, such as the rotenone‐insensitive NADH and NADPH dehydrogenases and the alternative oxidase, are stimulated by light, succinate dehydrogenase, subunits of the pyruvate dehydrogenase complex, cytochrome oxidase and fumarase are inhibited via the phytochrome mechanism. The effect of light, therefore, imposes limitations on the tricarboxylic acid cycle and on the mitochondrial electron transport coupled to ATP synthesis, while the non‐coupled pathways become activated. Phytochrome‐mediated regulation of gene expression also creates characteristic distribution patterns of photosynthetic, photorespiratory and respiratory enzymes across the leaf generating different populations of mitochondria, either enriched by glycine decarboxylase (in the upper part) or by succinate dehydrogenase (in the bottom part of the leaf).  相似文献   

6.
Microsporidia are obligate intracellular parasites, phylogenetically allied to the fungi. Once considered amitochondriate, now a number of mitochondrion-derived genes have been described from various species, and the relict organelle was recently identified in Trachipleistophora hominis. We have investigated the expression of potential mitochondrial targeted proteins in the spore stage to determine whether the organelle is likely to have a role in the spore or early infection stage. To investigate whether the Antonospora locustae genome codes for a different complement of mitochondrial proteins than Encephalitozoon cuniculi an EST library was searched for putative mitochondrial genes that have not been identified in the E. cuniculi genome project. The spore is the infectious stage of microsporidia, but is generally considered to be metabolically dormant. Fourteen genes for putatively mitochondrion-targeted proteins were shown to be present in purified spore mRNA by 3'-rapid amplification of cDNA ends and EST sequencing. Pyruvate dehydrogenase E1alpha and mitochondrial glycerol-3-phosphate dehydrogenase proteins were also shown to be present in A. locustae and E. cuniculi spores, respectively, suggesting a role for these proteins in the early stages of infection, or within the spore itself. EST sequencing also revealed two mitochondrial protein-encoding genes in A. locustae that are not found in the genome of E. cuniculi. One encodes a possible pyruvate transporter, the other a subunit of the mitochondrial inner membrane peptidase. In yeast mitochondria, this protein is part of a trimeric complex that processes proteins targeted to the inner membrane and the intermembrane space, and its substrate in A. locustae is presently unknown.  相似文献   

7.
Mitochondrion-related organelles, mitosomes and hydrogenosomes, are found in a phylogenetically broad range of organisms. Their components and functions are highly diverse. We have previously shown that mitosomes of the anaerobic/microaerophilic intestinal protozoan parasite Entamoeba histolytica have uniquely evolved and compartmentalized a sulfate activation pathway. Although this confined metabolic pathway is the major function in E. histolytica mitosomes, their physiological role remains unknown. In this study, we examined the phenotypes of the parasites in which genes involved in the mitosome functions were suppressed by gene silencing, and showed that sulfate activation in mitosomes is important for sulfolipid synthesis and cell proliferation. We also demonstrated that both Cpn60 and unusual mitochondrial ADP/ATP transporter (mitochondria carrier family, MCF) are important for the mitosome functions. Immunoelectron microscopy demonstrated that the enzymes involved in sulfate activation, Cpn60, and mitochondrial carrier family were differentially distributed within the electron dense, double membrane-bounded organelles. The importance and topology of the components in E. histolytica mitosomes reinforce the notion that they are not "rudimentary" or "residual" mitochondria, but represent a uniquely evolved crucial organelle in E. histolytica.  相似文献   

8.
Proper coordination between glycolysis and respiration is essential, yet the regulatory mechanisms involved in sensing respiratory chain defects and modifying mitochondrial functions accordingly are unclear. To investigate the nature of this regulation, we introduced respiratory bypass enzymes into cultured human (HEK293T) cells and studied mitochondrial responses to respiratory chain inhibition. In the absence of respiratory chain inhibitors, the expression of alternative respiratory enzymes did not detectably alter cell physiology or mitochondrial function. However, in permeabilized cells NDI1 (alternative NADH dehydrogenase) bypassed complex I inhibition, whereas alternative oxidase (AOX) bypassed complex III or IV inhibition. In contrast, in intact cells the effects of the AOX bypass were suppressed by growth on glucose, whereas those produced by NDI1 were unaffected. Moreover, NDI1 abolished the glucose suppression of AOX-driven respiration, implicating complex I as the target of this regulation. Rapid Complex I down-regulation was partly released upon prolonged respiratory inhibition, suggesting that it provides an “emergency shutdown” system to regulate metabolism in response to dysfunctions of the oxidative phosphorylation. This system was independent of HIF1, mitochondrial superoxide, or ATP synthase regulation. Our findings reveal a novel pathway for adaptation to mitochondrial dysfunction and could provide new opportunities for combatting diseases.  相似文献   

9.
A fast and reproducible procedure was elaborated for isolation of tightly coupled mitochondria from wild type and nap mutant Neurospora crassa cells harvested at different growth stages. The isolated mitochondrial preparations had controlled metabolic states and were tightly coupled, i.e., displayed good respiratory control and had close to the theoretically expected maximal ADP/O ratios upon oxidation of Krebs cycle intermediates and exogenous NADH. They contained the fully competent respiratory chain with all three points of energy conservation. Oxidation of all examined substrates by mitochondria from both wild type and mutant cells was mediated by two alternative terminal oxidative systems, albeit to varying extent, with the more pronounced engagement of the alternative oxidase in the stationary growth phase and with a minor contribution of this non-phosphorylating pathway in the substrate oxidation by mutant mitochondria. Oxidation of NAD-dependent substrates by mitochondria from the two cell types was accommodated via both rotenone-sensitive and rotenone-insensitive pathways, while the level of rotenone-insensitive pathway in mutant cells was lower than in wild type cells. It is suggested that a more limited contribution of alternative non-phosphorylating oxidative pathways to the total respiration in mutant cells, as compared with wild type cells, could, at least partially, explain an elevated ATP level in these cells. However, the absence of principal differences in the arrangement of the respiratory chain in mitochondria of wild type and mutant cells implies that the elevated ATP level in the nap mutant is largely related to reduced ATP expenses for transport processes in these cells.  相似文献   

10.
11.
Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of iron-sulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX), a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1) as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosomes.  相似文献   

12.
The constituents of the respiratory chain are believed to differ among the trypanosomatids; bloodstream stages of African trypanosomes and Phytomonas promastigotes oxidize ubiquinol by a ubiquinol:oxygen oxidoreductase, also known as alternative oxidase, whereas Leishmania spp. oxidize ubiquinol via a classic cytochrome-containing respiratory chain. The molecular basis for this elementary difference in ubiquinol oxidation by the mitochondrial electron-transport chain in distinct trypanosomatids was investigated. The presence of a gene encoding the plant-like alternative oxidase could be demonstrated in Phytomonas and Trypanosoma brucei , trypanosomatids that are known to contain alternative oxidase activity. Our results further demonstrated that Leishmania spp. lack a gene encoding the plant-like alternative oxidase, and therefore, all stages of Leishmania spp. will lack the alternative oxidase protein. The observed fundamental differences between the respiratory chains of distinct members of the trypanosomatid family are thus caused by the presence or absence of a gene encoding the plant-like alternative oxidase.  相似文献   

13.
Interaction between photosynthesis and respiration in illuminated leaves   总被引:3,自引:0,他引:3  
Plants are sessile organisms that often receive excessive amounts of light energy. This excess energy can be exported from the chloroplasts and dissipated by the mitochondrial respiratory chain. The inner membrane of plant mitochondria possesses unique non-phosphorylating pathways, involving alternative oxidase and type II NAD(P)H dehydrogenases. There are accumulating amounts of evidence showing that these energy-wasteful pathways are up-regulated under excess light conditions, suggesting that they play key roles in efficient photosynthesis. Based on recent advances in our understanding about the metabolic interaction between chloroplasts and mitochondria, we discuss the importance of the respiratory chain for stabilizing the photosynthetic system.  相似文献   

14.
15.
The synthesis of 40 polypeptides in mitochondria was found to be stimulated after transient exposure of human endothelial cells to sublethal levels of hydroperoxides, such as H(2)O(2), using comparative two-dimensional polyacrylamide gel electrophoresis. Eleven proteins were identified; these include 60 kDa heat shock protein (HSP60), a mitochondrial type of 70 kDa HSP (mtHSP70), manganese-dependent superoxide dismutase (MnSOD), three metabolic enzymes in citric acid cycle, two components for respiratory chain complexes, a ribosomal protein for translation in mitochondria (RM12), and an unnamed protein. These proteins are involved in reduction-oxidation and protein biogenesis, suggesting that their synthesis, which is triggered under oxidative stress conditions, is aimed at playing a defensive role in mitochondria. Moreover, mtHSP70, HSP60, MnSOD, and RM12 were revealed as their respective precursor proteins with mitochondrial targeting sequences. The preproteins of HSP60 and mtHSP70 were transiently accumulated in mitochondria after the removal of H(2)O(2) in a processing competent state, while the accumulated preprotein of MnSOD localized inside mitochondria and remained unchanged. Membrane potential of mitochondria and cellular ATP levels were unchanged under these conditions. Taken together, these results suggest that hydroperoxide stress leads to preprotein accumulation, possibly due to the impairment of the protein-processing system in mitochondria, independent of membrane potential dissipation and ATP depletion.  相似文献   

16.
The number of genes that are up regulated or down regulated during apoptosis is large and still increasing. In an attempt to characterize differential gene expression during serum factor induced apoptosis in AK-5 cells (a rat histiocytoma), we found subunit 6 and subunit 8 of the transmembrane proton channel and subunit alpha of the catalytic core of the mitochondrial F0-F1 ATP synthase complex to be up regulated during apoptosis. The increase in the expression levels of these subunits was concomitant with a transient increase in the intracellular ATP levels, suggesting that the increase in cellular ATP content is a result of the increase in the expression of ATP synthase subunits' gene and de novo protein synthesis. Depleting the cellular ATP levels with oligomycin inhibited apoptosis significantly, pointing to the requirement of ATP during apoptosis. Caspase 1 and caspase 3 activity and the loss of mitochondrial membrane potential were also inhibited by oligomycin during apoptosis in these cells, suggesting that the oligomycin induced inhibition of apoptosis could be due to inhibition of caspase activity and inhibition of mitochondrial depolarization. However, cytochrome C release during apoptosis was found to be completely independent of intracellular ATP content. Besides the ATP synthase complex genes, other mitochondrial genes like cytochrome C oxidase subunit II and III also showed elevated levels of expression during apoptosis. This kind of a mitochondrial gene expression profile suggests that in AK-5 cells, these genes are upregulated in a time-linked manner to ensure sufficient intracellular ATP levels and an efficient functioning of the mitochondrial respiratory chain for successful completion of the apoptotic pathway.  相似文献   

17.
Deficiency of 3-methylcrotonyl-CoA carboxylase activity is an inherited metabolic disease biochemically characterized by accumulation and high urinary excretion of 3-methylcrotonylglycine (3MCG), and also of 3-hydroisovalerate in lesser amounts. Affected patients usually have neurologic dysfunction, brain abnormalities and cardiomyopathy, whose pathogenesis is still unknown. The present study investigated the in vitro effects of 3MCG on important parameters of energy metabolism, including CO2 production from labeled acetate, enzyme activities of the citric acid cycle, as well as of the respiratory chain complexes I–IV (oxidative phosphorylation), creatine kinase (intracellular ATP transfer), and synaptic Na+,K+-ATPase (neurotransmission) in brain cortex of young rats. 3MCG significantly reduced CO2 production, implying that this compound compromises citric acid cycle activity. Furthermore, 3MCG diminished the activities of complex II-III of the respiratory chain, mitochondrial creatine kinase and synaptic membrane Na+,K+-ATPase. Furthermore, antioxidants were able to attenuate or fully prevent the inhibitory effect of 3MCG on creatine kinase and synaptic membrane Na+,K+-ATPase activities. We also observed that lipid peroxidation was elicited by 3MCG, suggesting the involvement of free radicals on 3MCG-induced effects. Considering the importance of the citric acid cycle and the electron flow through the respiratory chain for brain energy production, creatine kinase for intracellular energy transfer, and Na+,K+-ATPase for the maintenance of the cell membrane potential, the present data indicate that 3MCG potentially impairs mitochondrial brain energy homeostasis and neurotransmission. It is presumed that these pathomechanisms may be involved in the neurological damage found in patients affected by 3-methylcrotonyl-CoA carboxylase deficiency.  相似文献   

18.
Although mitochondrial alternative oxidase(AOX)has been proposed to play essential roles in high light stress tolerance,the effects of AOX on chlorophyll synthesis are unclear.Previous studies indicated that during greening,chlorophyll accumulation was largely delayed in plants whose mitochondrial cyanide-resistant respiration was inhibited by knocking out nuclear encoded AOX gene.Here we show that this delay of chlorophyll accumulation was more significant under high light condition.Inhibition of cyanide-resistant respiration was also accompanied by the increase of plastid NADPH/NADP~+ratio,especially under high light treatment which subsequently blocked the import of multiple plastidial proteins,such as some components of the photosynthetic electron transport chain,the Calvin-Benson cycle enzymes and malate/oxaloacetate shuttle components.Over expression of AOXla rescued the aoxla mutant phenotype,including the chlorophyll accumulation during greening and plastidial protein import.It thus suggests that light intensity affects chlorophyll synthesis during greening process by a metabolic signal,the AOX-derived plastidial NADPH/NADP~+ratio change.And our results thus revealed a molecular mechanism of chloroplast-mitochondria interactions.  相似文献   

19.
Alternative oxidase (AOX) functions in stress resistance by preventing accumulation of reactive oxygen species (ROS), but little is known about in vivo partitioning of electron flow between AOX and the cytochrome pathway. We investigated the relationships between AOX expression and in vivo activity in Nicotiana sylvestris and the complex I-deficient CMSII mutant in response to a cell death elicitor. While a specific AOX1 isoform in the active reduced state was constitutively overexpressed in CMSII, partitioning through the alternative pathway was similar to the wild type. Lack of correlation between AOX content and activity indicates severe metabolic constraints in nonstressed mutant leaves. The bacterial elicitor harpin N(Ea) induced similar timing and extent of cell death and a twofold respiratory burst in both genotypes with little change in AOX amounts. However, partitioning to AOX was increased twofold in the wild type but remained unchanged in CMSII. Oxidative phosphorylation modeling indicated a twofold ATP increase in both genotypes. By contrast, mitochondrial superoxide dismutase activity and reduced forms of ascorbate and glutathione were higher in CMSII than in the wild type. These results demonstrate genetically programmed flexibility of plant respiratory routes and antioxidants in response to elicitors and suggest that sustained ATP production, rather than AOX activity by itself or mitochondrial ROS, might be important for in planta cell death.  相似文献   

20.
In the present work, we studied the influence of water (osmotic) stress on mitochondrial metabolic activity in etiolated pea (Pisum sativum L.) seedlings. Three-day-old pea seedlings were subjected to stress by placing their roots in 0.6 M mannitol for 48 h. Epicotyl growth was severely suppressed, and tissue water content was decreased. We revealed the negative influence of the water stress on mitochondrial metabolic activity of seedlings, which effect was retained also after organelle isolation. In particular, in the mitochondria of stressed seedlings, the rate of oxidation of malate and other respiratory substrates (in state 3) was severely decreased, as well as respiratory control ratio. The rate of proline oxidation was reduced most seriously (by 70%). The efficiency of oxidative phosphorylation, according to the ADP/O ratio was not changed or was increased as compared to mitochondria in control plants. Activation of CN-resistant oxidase and other alternative pathways of electron transport in the mitochondrial electron-transport chain in stressed plants were not observed. In the epicotyl tissues under water stress, no MDA was accumulated and proline accumulation was insignificant. The role of mitochondria in adaptation responses of young seedlings is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号