首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial pathogens of plants and animals utilize conserved type III delivery systems to traffic effector proteins into host cells. Plant innate immune systems evolved disease resistance (R) genes to recognize some type III effectors, termed avirulence (Avr) proteins. On disease-susceptible (r) plants, Avr proteins can contribute to pathogen virulence. We demonstrate that several type III effectors from Pseudomonas syringae are targeted to the host plasma membrane and that efficient membrane association enhances function. Efficient localization of three Avr proteins requires consensus myristoylation sites, and Avr proteins can be myristoylated inside the host cell. These prokaryotic type III effectors thus utilize a eukaryote-specific posttranslational modification to access the subcellular compartment where they function.  相似文献   

2.
Gram-negative phytopathogenic bacteria require a type III secretion apparatus for pathogenesis, presumably to deliver Avr effector proteins directly into plant cells. To extend previous studies of Avr effectors that employed plasmids encoding Avr proteins, we developed a system that permits the integration of any gene into the Pseudomonas syringae genome in single copy. With this system, we confirmed earlier findings showing that P. syringae pv. maculicola strain PsmES4326 expressing the AvrRpt2 effector induces a resistance response in plants with the cognate R gene, RPS2. Chromosomally located avrRpt2, however, provoked a stronger resistance response than that observed with plasmid-expressed AvrRpt2 in RPS2+ plants. Additionally, chromosomal expression of AvrRpt2 conferred a fitness advantage on P. syringae grown in rps2- plants, aiding in growth within leaves and escape to leaf surfaces that was difficult to detect with plasmid-borne avrRpt2. Finally, with the use of the genomic integration system, we found that a chimeric protein composed of the N terminus of the heterologous AvrRpml effector and the C-terminal effector region of AvrRpt2 was delivered to plant cells. Because the C terminus of AvrRpt2 cannot translocate into plant cells on its own, this indicates that the N-terminal region can direct secretion and translocation during an infection, which supports the view that Avr proteins have a modular design. This work establishes a readily manipulatable system to study type III effectors in a biologically realistic context.  相似文献   

3.
Rhizobia utilize pathogen-like effector proteins during symbiosis   总被引:1,自引:0,他引:1  
A type III protein secretion system (T3SS) is an important host range determinant for the infection of legumes by Rhizobium sp. NGR234. Although a functional T3SS can have either beneficial or detrimental effects on nodule formation, only the rhizobial-specific positively acting effector proteins, NopL and NopP, have been characterized. NGR234 possesses three open reading frames potentially encoding homologues of effector proteins from pathogenic bacteria. NopJ, NopM and NopT are secreted by the T3SS of NGR234. All three can have negative effects on the interaction with legumes, but NopM and NopT also stimulate nodulation on certain plants. NopT belongs to a family of pathogenic effector proteases, typified by the avirulence protein, AvrPphB. The protease domain of NopT is required for its recognition and a subsequent strong inhibition in infection of Crotalaria juncea . In contrast, the negative effects of NopJ are relatively minor when compared with those induced by its Avr homologues. Thus NGR234 uses a mixture of rhizobial-specific and pathogen-derived effector proteins. Whereas some legumes recognize an effector as potentially pathogen-derived, leading to a block in the infection process, others perceive both the negative- and positive-acting effectors concomitantly. It is this equilibrium of effector action that leads to modulation of symbiotic development.  相似文献   

4.
5.
Bacterial pathogens deliver type III effector proteins into plant cells during infection. On susceptible host plants, type III effectors contribute to virulence, but on resistant hosts they betray the pathogen to the plant's immune system and are functionally termed avirulence (Avr) proteins. Recognition induces a complex suite of cellular and molecular events comprising the plant's inducible defence response. As recognition of type III effector proteins occurs inside host cells, defence responses can be elicited by in planta expression of bacterial type III effectors. We demonstrate that recognition of either of two type III effectors, AvrRpm1 or AvrRpt2 from Pseudomonas syringae , induced biphasic accumulation of phosphatidic acid (PA). The first wave of PA accumulation correlated with disappearance of monophosphatidylinosotol (PIP) and is thus tentatively attributed to activation of a PIP specific phospholipase C (PLC) in concert with diacylglycerol kinase (DAGK) activity. Subsequent activation of phospholipase D (PLD) produced large amounts of PA from structural phospholipids. This later wave of PA accumulation was several orders of magnitude higher than the PLC-dependent first wave. Inhibition of phospholipases blocked the response, and feeding PA directly to leaf tissue caused cell death and defence-gene activation. Inhibitor studies ordered these events relative to other known signalling events during the plant defence response. Influx of extracellular Ca2+ occurred downstream of PIP-degradation, but upstream of PLD activation. Production of reactive oxygen species occurred downstream of the phospholipases. The data presented indicate that PA is a positive regulator of RPM1- or RPS2-mediated disease resistance signalling, and that the biphasic PA production may be a conserved feature of signalling induced by the coiled-coil nucleotide binding domain leucine-rich repeat class of resistance proteins.  相似文献   

6.
Plant disease resistance (R) proteins recognize potential pathogens expressing corresponding avirulence (Avr) proteins through 'gene-for-gene' interactions. RPM1 is an Arabidopsis R-protein that triggers a robust defense response upon recognizing the Pseudomonas syringae effector AvrRpm1. Avr-proteins of phytopathogenic bacteria include type III effector proteins that are often capable of enhancing virulence when not recognized by an R-protein. In rpm1 plants, AvrRpm1 suppresses basal defenses induced by microbe-associated molecular patterns. Here, we show that expression of AvrRpm1 in rpm1 plants induced PR-1, a classical defense marker, and symptoms including chlorosis and necrosis. PR-1 expression and symptoms were reduced in plants with mutations in defense signaling genes ( pad4 , sid2 , npr1 , rar1 , and ndr1 ) and were strongly reduced in rpm1 rps2 plants, indicating that AvrRpm1 elicits defense signaling through the Arabidopsis R-protein, RPS2. Bacteria expressing AvrRpm1 grew more on rpm1 rps2 than on rpm1 plants. Thus, independent of its classical 'gene-for-gene' activation of RPM1, AvrRpm1 also induces functionally relevant defenses that are dependent on RPS2. Finally, AvrRpm1 suppressed host defenses and promoted the growth of type III secretion mutant bacteria equally well in rps2 and RPS2 plants, indicating that virulence activity of over-expressed AvrRpm1 predominates over defenses induced by weak activation of RPS2.  相似文献   

7.
8.
Pseudomonas syringae strains translocate large and distinct collections of effector proteins into plant cells via the type III secretion system (T3SS). Mutations in T3SS-encoding hrp genes are unable to elicit the hypersensitive response or pathogenesis in nonhost and host plants, respectively. Mutations in individual effectors lack strong phenotypes, which has impeded their discovery. P. syringae effectors are designated Hop (Hrp outer protein) or Avr (avirulence) proteins. Some Hop proteins are considered to be extracellular T3SS helpers acting at the plant-bacterium interface. Identification of complete sets of effectors and related proteins has been enabled by the application of bioinformatic and high-throughput experimental techniques to the complete genome sequences of three model strains: P. syringae pv. tomato DC3000, P. syringae pv. phaseolicola 1448A, and P. syringae pv. syringae B728a. Several recent papers, including three in this issue of Molecular Plant-Microbe Interactions, address the effector inventories of these strains. These studies establish that active effector genes in P. syringae are expressed by the HrpL alternative sigma factor and can be predicted on the basis of cis Hrp promoter sequences and N-terminal amino-acid patterns. Among the three strains analyzed, P. syringae pv. tomato DC3000 has the largest effector inventory and P. syringae pv. syringae B728a has the smallest. Each strain has several effector genes that appear inactive. Only five of the 46 effector families that are represented in these three strains have an active member in all of the strains. Web-based community resources for managing and sharing growing information on these complex effector arsenals should help future efforts to understand how effectors promote P. syringae virulence.  相似文献   

9.
The Cladosporium fulvum Avr2 effector is a novel type of cysteine protease inhibitor with eight cysteine residues that are all involved in disulphide bonds. We have produced wild-type Avr2 protein in Pichia pastoris and determined its disulphide bond pattern. By site-directed mutagenesis of all eight cysteine residues, we show that three of the four disulphide bonds are required for Avr2 stability. The six C-terminal amino acid residues of Avr2 contain one disulphide bond that is not embedded in its overall structure. Avr2 is not processed by the tomato cysteine protease Rcr3 and is an uncompetitive inhibitor of Rcr3. We also produced mutant Avr2 proteins in which selected amino acid residues were individually replaced by alanine, and, in one mutant, all six C-terminal amino acid residues were deleted. We determined the inhibitory constant (K(i) ) of these mutants for Rcr3 and their ability to trigger a Cf-2-mediated hypersensitive response (HR) in tomato. We found that the two C-terminal cysteine residues and the six amino acid C-terminal tail of Avr2 are required for both Rcr3 inhibitory activity and the ability to trigger a Cf-2-mediated HR. Individual replacement of the lysine-17, lysine-20 or tyrosine-21 residue by alanine did not affect significantly the biological activity of Avr2. Overall, our data suggest that the affinity of the Avr2 mutants for Rcr3 correlates with their ability to trigger a Cf-2-mediated HR.  相似文献   

10.
11.
The sequenced genomes of oomycete plant pathogens contain large superfamilies of effector proteins containing the protein translocation motif RXLR-dEER. However, the contributions of these effectors to pathogenicity remain poorly understood. Here, we show that the Phytophthora sojae effector protein Avr1b can contribute positively to virulence and can suppress programmed cell death (PCD) triggered by the mouse BAX protein in yeast, soybean (Glycine max), and Nicotiana benthamiana cells. We identify three conserved motifs (K, W, and Y) in the C terminus of the Avr1b protein and show that mutations in the conserved residues of the W and Y motifs reduce or abolish the ability of Avr1b to suppress PCD and also abolish the avirulence interaction of Avr1b with the Rps1b resistance gene in soybean. W and Y motifs are present in at least half of the identified oomycete RXLR-dEER effector candidates, and we show that three of these candidates also suppress PCD in soybean. Together, these results indicate that the W and Y motifs are critical for the interaction of Avr1b with host plant target proteins and support the hypothesis that these motifs are critical for the functions of the very large number of predicted oomycete effectors that contain them.  相似文献   

12.
Cloning the first avirulence ( avr ) gene has led not only to a deeper understanding of gene-for-gene interactions in plant disease, but also to fundamental insights into the suppression of basal defences against microbial attack. This article (focusing on Pseudomonas syringae ) charts the development of ideas and research progress over the 25 years following the breakthrough achieved by Staskawicz and coworkers. Advances in gene cloning technology underpinned the identification of both avr and hrp genes, the latter being required for the activation of the defensive hypersensitive reaction (HR) and pathogenicity. The delivery of Avr proteins through the type III secretion machinery encoded by hrp gene clusters was demonstrated, and the activity of the proteins inside plant cells as elicitors of the HR was confirmed. Key roles for avr genes in pathogenic fitness have now been established. The rebranding of Avr proteins as effectors, proteins that suppress the HR and cell wall-based defences, has led to the ongoing search for their targets, and is generating new insights into the co-ordination of plant resistance against diverse microbes. Bioinformatics-led analysis of effector gene distribution in genomes has provided a remarkable view of the interchange of effectors and also their functional domains, as the arms race of attack and defence drives the evolution of microbial pathogenicity. The application of our accrued knowledge for the development of disease control strategies is considered.  相似文献   

13.
14.
Many bacterial avirulence (Avr) proteins, including the Pseudomonas syringae proteins, AvrRpt2 and AvrB, appear to be recognized inside the host plant cell by resistance mechanisms mediated by the cognate resistance (R) genes. It is thought that Avr proteins are either delivered directly into the host cell via the bacterial type III secretion system (TTSS) or taken up by the plant cell following secretion into the apoplast through the TTSS. Recently, it was shown that the Xanthomonas campestris AvrBs2 protein can be delivered directly into the host plant cell by the TTSS. However, it is not known whether other type III effectors of phytopathogens behave similarly. Here, using a novel protein transfection method, we demonstrate that AvrRpt2 and AvrB must enter the plant cell to be recognized by R gene-mediated mechanisms. First, we established a hypersensitive cell death assay for protoplasts using the membrane-impermeable, nuclear-staining dye, YO-PRO-1, and transgenic Arabidopsis plants that carry an inducible avrRpt2 gene. Second, we transfected E. coli-produced AvrRpt2 or AvrB proteins into Arabidopsis protoplasts using a protein transfection kit based on the carrier peptide Pep-1, and demonstrated that hypersensitive cell death occurs in a gene-for-gene-specific manner. In contrast, these Avr proteins failed to elicit hypersensitive cell death when they were applied to protoplasts without the carrier peptide. We conclude that our preparations of E. coli-produced AvrRpt2 and AvrB are active, that AvrRpt2 and AvrB must be delivered into the plant cell to be recognized, and that a method based on a carrier peptide can be used to introduce proteins into plant cells.  相似文献   

15.
Bacterial pathogenicity to plants and animals has evolved through an arms race of attack and defense. Key players are bacterial effector proteins, which are delivered through the type III secretion system and suppress basal defenses . In plants, varietal resistance to disease is based on recognition of effectors by the products of resistance (R) genes . When recognized, the effector or in this scenario, avirulence (Avr) protein triggers the hypersensitive resistance reaction (HR), which generates antimicrobial conditions . Unfortunately, such gene-for-gene-based resistance commonly fails because of the emergence of virulent strains of the pathogen that no longer trigger the HR . We have followed the emergence of a new virulent pathotype of the halo-blight pathogen Pseudomonas syringae pv. phaseolicola within leaves of a resistant variety of bean. Exposure to the HR led to the selection of strains lacking the avirulence (effector) gene avrPphB (or hopAR1), which triggers defense in varieties with the matching R3 resistance gene. Loss of avrPphB was through deletion of a 106 kb genomic island (PPHGI-1) that shares features with integrative and conjugative elements (ICElands) and also pathogenicity islands (PAIs) in diverse bacteria . We provide a molecular explanation of how exposure to resistance mechanisms in plants drives the evolution of new virulent forms of pathogens.  相似文献   

16.
Pseudomonas syringae is a plant pathogen whose pathogenicity and host specificity are thought to be determined by Hop/Avr effector proteins injected into plant cells by a type III secretion system. P. syringae pv. syringae B728a, which causes brown spot of bean, is a particularly well-studied strain. The type III secretion system in P. syringae is encoded by hrp (hypersensitive response and pathogenicity) and hrc (hrp conserved) genes, which are clustered in a pathogenicity island with a tripartite structure such that the hrp/hrc genes are flanked by a conserved effector locus and an exchangeable effector locus (EEL). The EELs of P. syringae pv. syringae B728a, P. syringae strain 61, and P. syringae pv. tomato DC3000 differ in size and effector gene composition; the EEL of P. syringae pv. syringae B728a is the largest and most complex. The three putative effector proteins encoded by the P. syringae pv. syringae B728a EEL--HopPsyC, HopPsyE, and HopPsyV--were demonstrated to be secreted in an Hrp-dependent manner in culture. Heterologous expression of hopPsyC, hopPsyE, and hopPsyV in P. syringae pv. tabaci induced the hypersensitive response in tobacco leaves, demonstrating avirulence activity in a nonhost plant. Deletion of the P. syringae pv. syringae B728a EEL strongly reduced virulence in host bean leaves. EELs from nine additional strains representing nine P. syringae pathovars were isolated and sequenced. Homologs of avrPphE (e.g., hopPsyE) and hopPsyA were particularly common. Comparative analyses of these effector genes and hrpK (which flanks the EEL) suggest that the EEL effector genes were acquired by horizontal transfer after the acquisition of the hrp/hrc gene cluster but before the divergence of modern pathovars and that some EELs underwent transpositions yielding effector exchanges or point mutations producing effector pseudogenes after their acquisition.  相似文献   

17.
Salmonella enterica are facultative intracellular bacteria that cause intestinal and systemic diseases, and replicate within host cells in a membrane-bound compartment, the Salmonella-containing vacuole. Intravacuolar bacterial replication depends on spatiotemporal regulated interactions with host cell vesicular compartments. Recent studies have shown that type III secretion effector proteins control both the vacuolar membrane dynamics and intracellular positioning of bacterial vacuoles. The functions of these effectors, which are beginning to be understood, disclose a complex hijacking of host cell microtubule motors--kinesins and dynein--and regulators of their function, and suggest interactions with the Golgi complex. Here, we discuss current models describing the mode of action of Salmonella type III secretion effector proteins involved in these processes.  相似文献   

18.
Plant pathogens use effector proteins to target host processes involved in pathogen perception, immune signalling, or defence outputs. Unlike foliar pathogens, it is poorly understood how root-invading pathogens suppress immunity. The Avr2 effector from the tomato root- and xylem-colonizing pathogen Fusarium oxysporum suppresses immune signalling induced by various pathogen-associated molecular patterns (PAMPs). It is unknown how Avr2 targets the immune system. Transgenic AVR2 Arabidopsis thaliana phenocopies mutants in which the pattern recognition receptor (PRR) co-receptor BRI1-ASSOCIATED RECEPTOR KINASE (BAK1) or its downstream signalling kinase BOTRYTIS-INDUCED KINASE 1 (BIK1) are knocked out. We therefore tested whether these kinases are Avr2 targets. Flg22-induced complex formation of the PRR FLAGELLIN SENSITIVE 2 and BAK1 occurred in the presence and absence of Avr2, indicating that Avr2 does not affect BAK1 function or PRR complex formation. Bimolecular fluorescence complementation assays showed that Avr2 and BIK1 co-localize in planta. Although Avr2 did not affect flg22-induced BIK1 phosphorylation, mono-ubiquitination was compromised. Furthermore, Avr2 affected BIK1 abundance and shifted its localization from nucleocytoplasmic to the cell periphery/plasma membrane. Together, these data imply that Avr2 may retain BIK1 at the plasma membrane, thereby suppressing its ability to activate immune signalling. Because mono-ubiquitination of BIK1 is required for its internalization, interference with this process by Avr2 could provide a mechanistic explanation for the compromised BIK1 mobility upon flg22 treatment. The identification of BIK1 as an effector target of a root-invading vascular pathogen identifies this kinase as a conserved signalling component for both root and shoot immunity.  相似文献   

19.
RXLR effectors of plant pathogenic oomycetes   总被引:1,自引:0,他引:1  
Oomycetes are a phylogenetically distinct group of organisms that include some of the most devastating plant pathogens. Recent characterization of four oomycete Avr genes revealed that they encode effector proteins with a common modular structure, including a N-terminal conserved RXLR motif. Several lines of evidence initially indicated, with support from more recent works, that these Avr proteins are secreted by the pathogen and then translocated into the host cell during infection. In addition to elucidating the machinery required for host-cell transport, future works remain to determine the myriad virulence functions of oomycete RXLR effector proteins.  相似文献   

20.
A major insight that has emerged in the study of haustoria-forming plant pathogens over the last few years is that these eukaryotic biotrophs deliver suites of secreted proteins into host cells during infection. This insight has largely derived from successful efforts to identify avirulence (Avr) genes and their products from these pathogens. These Avr genes, identified from a rust and a powdery mildew fungus and three oomycete species, encode small proteins that are recognized by resistance proteins in the host plant cytoplasm, suggesting that they are transported inside plant cells during infection. These Avr proteins probably represent examples of fungal and oomycete effector proteins with important roles in subverting host cell biology during infection. In this respect, they represent a new opportunity to understand the basis of disease caused by these biotrophic pathogens. Elucidating how these pathogen proteins gain entry into plant cells and their biological function will be key questions for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号