首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of guanidinium compounds on the catalytic mechanism of pig kidney and lentil seedling amine oxidases has been investigated by polarographic techniques and spectroscopy. Guanidine does not inhibit the lentil enzyme and is a weak inhibitor for pig kidney amine oxidase (K(i) =1 mM), whereas aminoguanidine is an irreversible inhibitor of both enzymes, with a K(i) value of 10(-6) M. 1,4-Diguanidino butane (arcaine) is a competitive inhibitor for both pig and lentil amine oxidases. Amiloride is a competitive inhibitor for pig enzyme, but upon prolonged incubation with this drug the enzyme gradually loses its activity in an irreversible manner.  相似文献   

2.
Copper amine oxidase from lentil (Lens esculenta) seedlings was shown to catalyze the oxidative deamination of tyramine and three similar aromatic monoamines, benzylamine, phenylethylamine and 4-methoxyphenylethylamine. Tyramine, an important plant intermediate, was found to be both a substrate and an irreversible inhibitor of the enzyme whereas the other amines were not inhibitory. In the course of tyramine oxidation the enzyme gradually became inactivated with the concomitant appearance of a new absorption at 560 nm due to the formation of a stable adduct. Inactivation took place only in the presence of oxygen and was probably due to the reaction of the enzyme with the oxidation product of tyramine, p-hydroxyphenylacetaldehyde. The kinetic data obtained in this study indicate that tyramine represents a new interesting type of physiological mechanism-based inhibitor for plant copper amine oxidases.  相似文献   

3.
The interaction of xenon with copper/6-hydroxydopa (2,4,5-trihydroxyphenethylamine) quinone (TPQ) amine oxidases from the plant pulses lentil (Lens esculenta) and pea (Pisum sativum) (seedlings), the perennial Mediterranean shrub Euphorbia characias (latex), and the mammals cattle (serum) and pigs (kidney), were investigated by NMR and optical spectroscopy of the aqueous solutions of the enzymes. (129)Xe chemical shift provided evidence of xenon binding to one or more cavities of all these enzymes, and optical spectroscopy showed that under 10 atm of xenon gas, and in the absence of a substrate, the plant enzyme cofactor (TPQ), is converted into its reduced semiquinolamine radical. The kinetic parameters of the analyzed plant amine oxidases showed that the k(c) value of the xenon-treated enzymes was reduced by 40%. Moreover, whereas the measured K(m) value for oxygen and for the aromatic monoamine benzylamine was shown to be unchanged, the K(m) value for the diamine putrescine increased remarkably after the addition of xenon. Under the same experimental conditions, the TPQ of bovine serum amine oxidase maintained its oxidized form, whereas in pig kidney, the reduced aminoquinol species was formed without the radical species. Moreover the k(c) value of the xenon-treated pig enzyme in the presence of both benzylamine and cadaverine was shown to be dramatically reduced. It is proposed that the lysine residue at the active site of amine oxidase could be involved both in the formation of the reduced TPQ and in controlling catalytic activity.  相似文献   

4.
Longu S  Mura A  Padiglia A  Medda R  Floris G 《Phytochemistry》2005,66(15):1751-1758
Copper/quinone amine oxidases contain Cu(II) and the quinone of 2,4,5-trihydroxyphenylalanine (topaquinone; TPQ) as cofactors. TPQ is derived by post-translational modification of a conserved tyrosine residue in the protein chain. Major advances have been made during the last decade toward understanding the structure/function relationships of the active site in Cu/TPQ amine oxidases using specific inhibitors. Mechanism-based inactivators are substrate analogues that bind to the active site of an enzyme being accepted and processed by the normal catalytic mechanism of the enzyme. During the reaction a covalent modification of the enzyme occurs leading to irreversible inactivation. In this review mechanism-based inactivators of plant Cu/TPQ amine oxidases from the pulses lentil (Lens esculenta), pea (Pisum sativum), grass pea (Lathyrus sativus) and sainfoin (Onobrychis viciifolia,) are described. Substrates forming, in aerobiotic and in anaerobiotic conditions, killer products that covalently bound to the quinone cofactor or to a specific amino acid residue of the target enzyme are all reviewed.  相似文献   

5.
The reaction of NO-derivatized polyamines called "NONOates" with an amine oxidase from lentil seedlings was studied. 3,3-Bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (DETA-NONOate) and 3,3'-(hydroxynitrosohydrazino)bis-1-propanamine (DPTA-NONOate) were found to be irreversible inactivators of the lentil enzyme. The spectrum of the protein was strongly affected in the course of reaction with both compounds, leading to the formation of a covalent adduct with a stable band at 334 nm. The corresponding amine compounds diethylentriamine (DETA) and norspermidine (DPTA) were substrates of the lentil enzyme that did not lead to enzyme inactivation. Diethylamine-NONOate, not containing amino groups, was found to be an irreversible inactivator of the amine oxidase only in the presence of a substrate. Since all NONOates spontaneously decompose in solution with release of NO, it seems as if the latter is responsible for the enzyme inhibition. The insensitivity of the native enzyme to NO suggested that this compound was unreactive toward both the cofactors, 6-hydroxydopa quinone (TPQ) and Cu(II), and thus a model for the irreversible inactivation could involve the attack by NO of the Cu(I)-semiquinolamine radical catalytic intermediate.  相似文献   

6.
Medda R  Mura A  Longu S  Anedda R  Padiglia A  Casu M  Floris G 《Biochimie》2006,88(7):827-835
Plant copper/quinone amine oxidases are homodimeric enzymes containing Cu(II) and a quinone derivative of a tyrosyl residue (2,4,5-trihydroxyphenylalanine, TPQ) as cofactors. These enzymes catalyze the oxidative deamination of primary amines by a classical ping-pong mechanism, i.e. two distinct half-reactions, enzyme reduction by substrate followed by its re-oxidation by molecular oxygen. In the first half-reaction two forms of the reduced TPQ have been observed, the colorless Cu(II)-aminoquinol and the yellow Cu(I)-semiquinolamine radical so that this enzyme may be referred to as a "protein-radical enzyme". The interaction of xenon, in aqueous solutions, with the copper/TPQ amine oxidase from lentil (Lens esculenta) seedlings has been investigated by NMR and optical spectroscopy. NMR data indicate that xenon binds to the protein. Under 10 atm gaseous xenon and in the absence of substrates more than 60% native enzyme is converted into Cu(I)-semiquinolamine radical species, showing for the first time that both monomers in the dimer can generate the radical. Under the same experimental conditions the copper-free lentil enzyme is able to generate an intermediate absorbing at about 360 nm, which is assigned to the product Schiff base quinolaldimine which, to the best of our knowledge, has never been observed during the catalytic mechanism of plant amine oxidases. A possible role of the lysine residue responsible for the formation of Cu(I)-semiquinolamine and quinolaldimine, is proposed.  相似文献   

7.
Copper/TPQ amine oxidases from mammalian and plant sources have shown many differences in substrate specificity and molecular properties. In this work the activity of lentil seedling amine oxidase was followed at various temperatures in 100 mM potassium phosphate buffer, pH 7, using benzylamine as substrate. The discontinuous Arrhenius plot of lentil amine oxidase showed two distinct phases with a jump between them. Thermal denaturation of the enzyme, using differential scanning calorimetry under the same experimental conditions, showed a transition at the same temperature ranges in the absence of substrate, indicating the occurrence of conformational changes, with an enthalpy change of about 175.9 kJ/mole. The temperature-induced changes of the activity of lentil amine oxidase are compared with those of bovine serum amine oxidase (taken from the literature).  相似文献   

8.
The relationships between the structural and energetic domains of lentil seedling amine oxidase (LSAO) were investigated using modifiers that target the active site and the carbohydrate moiety of the enzyme. An irreversible inhibitor, aminoguanidine, specifically modified the active site of the lentil enzyme, whereas sodium metaperiodate cleaves carbohydrate moieties covalently bound to the native enzyme. Differential scanning calorimetry (DSC) measurements were made on the modified LSAOs. Deconvolution of the reversible thermal DSC profiles of the modified enzyme gave three subpeaks (energetic domains), each of which was assigned to one of the three structural domains of the native protein. Our results led us to conclude that deglycosylation of LSAO has no effect on thermal stability, whereas binding of the inhibitor imparts more stability to the enzyme.  相似文献   

9.
The relationships between the structural and energetic domains of lentil seedling amine oxidase (LSAO) were investigated using modifiers that target the active site and the carbohydrate moiety of the enzyme. An irreversible inhibitor, aminoguanidine, specifically modified the active site of the lentil enzyme, whereas sodium metaperiodate cleaves carbohydrate moieties covalently bound to the native enzyme. Differential scanning calorimetry (DSC) measurements were made on the modified LSAOs. Deconvolution of the reversible thermal DSC profiles of the modified enzyme gave three subpeaks (energetic domains), each of which was assigned to one of the three structural domains of the native protein. Our results led us to conclude that deglycosylation of LSAO has no effect on thermal stability, whereas binding of the inhibitor imparts more stability to the enzyme.  相似文献   

10.
Plasma amine oxidases (EC 1.4.3.6) are classified as containing the organic cofactor pyridoxal phosphate. Biochemical and bioassays on the pig plasma amine oxidase fail to reveal the presence of pyridoxal phosphate and 31P n.m.r. evidence is also inconsistent with pyridoxal phosphate in the enzyme. Resonance Raman spectral studies on phenylhydrazone derivatives of the pig and bovine plasma enzymes have been carried out and comparisons made with the corresponding derivatives of pyridoxal phosphate and pyrroloquinoline quinone (PQQ). The resonance Raman evidence indicates that the cofactor in both plasma amine oxidases is PQQ or a closely related species and not pyridoxal phosphate. The results substantiate earlier reports concerning the identity of the organic cofactor.  相似文献   

11.
Antibodies have been raised against purified beef plasma, pig plasma and pig kidney amine oxidases. Despite the overall similarity, no immunological cross-reactivity was observed among these enzymes, even using a very sensitive light-scattering technique. The presence of substrate affects the rate of the reaction between kidney diamine oxidase and its antibody, but not that of other amine oxidases.  相似文献   

12.
Various mammalian tissues contain a tissue-bound amine oxidizing enzyme distinct from mitochondrial outer membrane enzyme, monoamine oxidase (MAO, EC 1.4.3.4), termed semicarbazide-sensitive amine oxidase (SSAO, EC 1.4.3.6). An increase in SSAO activity was found in patients suffering from vascular disorders such as diabetes and diabetic complications. It has previously been shown that 2-bromoethylamine (2-BEA) is a potent, and selective suicidal inhibitor of tissue-bound SSAO. The aim of this study was to investigate the interaction of this suicidal SSAO inhibitor with the tissue-bound enzyme in guinea pig lung, kidney, stomach, and heart homogenates. The conditions necessary for this inhibitor to titrate the concentrations of this enzyme were also determined. 2-BEA appears to interact with SSAO, as reported previously for this enzyme from different sources, in a manner consistent with an irreversible, "suicide" reaction. Because of this property, 2-BEA could be used to titrate the concentrations of SSAO active centers in these tissues under the appropriate conditions employed. Although some possible non-specific binding of the inhibitor to sites other than the active center of the enzyme, metabolism of this inhibitor and/or presence of enzyme subtypes was hypothesized, the molecular characteristics of SSAO in these tissues (Km, Vmax values, enzyme efficiencies, approximate enzyme concentrations, and molecular turnover numbers) towards the substrate kynuramine (0.1 mM) at pH 7.4 and 37 degrees C have been estimated.  相似文献   

13.
14.
1. Pig kidney and pea seedling diamine oxidases have similar sensitivity to methylhydrazine and phenylhydrazine as inhibitors. 2. Inhibition of pig kidney and pea seedling enzymes by hydrazine and guanidine compounds is time dependent. To reveal full inhibitory potency, methylhydrazine and aminoguanidine need longer preincubation with plant diamine oxidase as compared with mammalian diamine oxidase. 3. Impromidine, a known H2 histamine receptor agonist with guanidine and imidazole structures, and aminoguanidine have higher inhibitory activity towards pig kidney enzyme in comparison with the pea seedling one. 4. Impromidine inhibits pig kidney diamine oxidase in a noncompetitive manner. The Ki value is 6.6 muM. 5. The 24 hr dialysis of rat intestinal diamine oxidase preincubated with phenylhydrazine or impromidine only partially recovered the enzymic activities. 6. Impromidine inhibits mouse intestinal diamine oxidase in vivo.  相似文献   

15.
The reaction of copper amine oxidases from beef plasma and lentil seedlings with hydrazine derivatives has been studied. A 1:1 stoichiometry was always found for the irreversible binding to the dimeric proteins. The formation of the adduct does not require the presence of oxygen or copper. Substrates compete with hydrazine derivatives for the binding to the enzymes. The binding of hydrazines and of substrate has different effects on the EPR spectra of enzymic copper.  相似文献   

16.
Lysyl oxidase from Pichia pastoris has been successfully overexpressed. EPR and resonance Raman experiments have shown that copper and TPQ are present, respectively. Lysyl oxidase from P. pastoris has a similar substrate specificity to the mammalian enzyme (both have been shown to oxidize peptidyl lysine residues) and is 30% identical to the human kidney diamine oxidase (the highest of any non-mammalian source). This enzyme also has a relatively broad substrate specificity compared to other amine oxidases. Molecular modeling data suggest that the substrate channel in lysyl oxidase from P. pastoris permits greater active site access than observed in structurally-characterized amine oxidases. This larger channel may account for the diversity of substrates that are turned over by this enzyme.  相似文献   

17.
The half-time method for the determination of Michaelis parameters from enzyme progress-curve data (Wharton, C.W. and Szawelski, R.J. (1982) Biochem. J. 203, 351-360) has been adapted for analysis of the kinetics of irreversible enzyme inhibition by an unstable site-specific inhibitor. The method is applicable to a model in which a product (R) of the decomposition of the site-specific reagent, retaining the chemical moiety responsible for inhibitor specificity, binds reversibly to the enzyme with dissociation constant Kr: (formula; see text). Half-time plots of simulated enzyme inactivation time-course data are shown to be unbiased, and excellent estimates of the apparent second-order rate constant for inactivation (k +2/Ki) and Kr can be obtained from a series of experiments with varying initial concentrations of inhibitor. Reliable estimates of k +2 and Ki individually are dependent upon the relative magnitudes of the kinetic parameters describing inactivation. The special case, Kr = Ki, is considered in some detail, and the integrated rate equation describing enzyme inactivation shown to be analogous to that for a simple bimolecular reaction between enzyme and an unstable irreversible inhibitor without the formation of a reversible enzyme-inhibitor complex. The half-time method can be directly extended to the kinetics of enzyme inactivation by an unstable mechanism-based (suicide) inhibitor, provided that the inhibitor is not also a substrate for the enzyme.  相似文献   

18.
The kinetics of thermal inactivation of copper-containing amine oxidase from lentil seedlings were studied in a 100 mM potassium phosphate buffer, pH 7, using putrescine as the substrate. The temperature range was between 47-60 degrees C. The thermal inactivation curves were not linear at 52 and 57 degrees C; three linear phases were shown. The first phase gave some information about the number of dimeric forms of the enzyme that were induced by the higher temperatures using the "conformational lock" pertaining theory to oligomeric enzyme. The "conformational lock" caused two additional dimeric forms of the enzyme when the temperature increased to 57 degrees C. The second and third phases were interpreted according to a dissociative thermal inactivation model. These phases showed that lentil amine oxidase was reversibly-dissociated before the irreversible thermal inactivation. Although lentil amine oxidase is not a thermostable enzyme, its dimeric structure can form "conformational lock," conferring a structural tolerance to the enzyme against heat stress.  相似文献   

19.
S-(4-Bromo-2,3-dioxobutyl)-CoA, a potential affinity label for enzymes possessing a receptor site(s) for short-chain acyl-CoA, was synthesized by condensing CoA and 1,4-dibromo-2,3-butanedione in acidified methanol. The new reagent was tested as an active site-directed irreversible inhibitor with four enzymes that accept a short-chain acyl-CoA as substrate. With citrate synthase (pig heart) and acetyl-CoA hydrolase (beef kidney) irreversible inhibition was observed, and the rate of inactivation obeyed first-order kinetics. Benzoyl-CoA, a reversible competitive inhibitor versus acetyl-CoA with both citrate synthase and acetyl-CoA hydrolase, protected the active site of both enzymes against the irreversible inhibitor. The new reagent was an exceptionally potent irreversible inhibitor of acetoacetyl-CoA thiolase (beef liver). Relatively low concentrations of the reagent (≥1 μm) completely inhibited the thiolase in less than 2 min. Preincubation of thiolase with acetoacetyl-CoA protected the enzyme against inhibition by S-(4-bromo-2,3-dioxobutyl)-CoA. In contrast, irreversible inhibition of l-3-hydroxyacyl-CoA dehydrogenase (pig heart) was not observed. Instead, the new reagent appeared to be a weak alternate substrate for this dehydrogenase. In all cases, the new reagent exhibited tight reversible binding at the active site since the measured Ki's (and Km) were in the range, 30 to 120 μm. It is anticipated that the new reagent will be suitable for investigating a number of acyl-CoA using enzymes by affinity labeling techniques.  相似文献   

20.
Copper amine oxidases (EC 1.4.3.6) exhibit atypical stereochemical patterns in the reactions they catalyze. Dopamine and tyramine are oxidized with abstraction of the pro-R hydrogen by the porcine plasma amine oxidase, the pro-S hydrogen by pea seedling amine oxidase and a net nonstereospecific proton abstraction by the bovine plasma enzyme. This provides the first example in which a reaction catalyzed by enzymes in the same formal class occurs by all three possible stereochemical routes. To assess the underlying mechanistic significance of this heterogeneity, we have established the stereochemical course of the oxidation of tyramine by five additional copper amine oxidases using 1H NMR spectroscopy. Reactions catalyzed by rabbit and sheep serum amine oxidases are nonstereospecific. These enzymes exhibit rare mirror image binding with differential flux through two opposite and stereospecific reaction pathways. Differential primary kinetic isotope effects are observed for each mode, 8 and 4.6 for pro-S abstraction and 2.6 and 2.7 for pro-R abstraction by the sheep and rabbit amine oxidases, respectively. Tyramine oxidations catalyzed by the soybean and chick pea amine oxidases and porcine kidney diamine oxidase, however, are all stereospecific, occurring with loss of the pro-S hydrogen at C-1. Solvent exchange profiles are consistent within each stereochemical class of enzyme; the pro-R and nonstereospecific enzymes exchange solvent into C-2 of product aldehydes, the pro-S enzymes do not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号