首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cama E  Emig FA  Ash DE  Christianson DW 《Biochemistry》2003,42(25):7748-7758
Arginase is a binuclear manganese metalloenzyme that hydrolyzes l-arginine to form l-ornithine and urea. The three-dimensional structures of D128E, D128N, D232A, D232C, D234E, H101N, and H101E arginases I have been determined by X-ray crystallographic methods to elucidate the roles of the first-shell metal ligands in the stability and catalytic activity of the enzyme. This work represents the first structure-based dissection of the binuclear manganese cluster using site-directed mutagenesis and X-ray crystallography. Substitution of the metal ligands compromises the catalytic activity of the enzyme, either by the loss or disruption of the metal cluster or the nucleophilic metal-bridging hydroxide ion. However, the substitution of the metal ligands or the reduction of Mn(2+)(A) or Mn(2+)(B) occupancy does not compromise enzyme-substrate affinity as reflected by K(M), which remains relatively invariant across this series of arginase variants. This implicates a nonmetal binding site for substrate l-arginine in the precatalytic Michaelis complex, as proposed based on analysis of the native enzyme structure (Kanyo, Z. F., Scolnick, L. R., Ash, D. E., and Christianson, D. W. (1996) Nature 383, 554-557).  相似文献   

2.
3.
Cancer magister hemocyanin oxidized by H2O2 (Felsenfeld, G.F. and Printz, M.P. (1959) J. Am. Chem. Soc. 81, 6259–6264) contained 80–95% cupric copper, small amounts of EPR-detectable Cu(II), and native hemocyanin. The small amounts of EPR-detectable Cu(II) showed a signal characteristic of mononuclear Cu(II) in the region of g = 2 between 233°K and 10°K, with normal Curie behavior, and no Δm = 2 signal. Magnetic susceptibility measurements show the methemocyanin to be diamagnetic over the temperature range 1.5–77°K. It had an optical absorption maximum at 680 nm, ϵ = 60 ± 7 MCu−1 · cm−1 at 25°C, and at 327 nm (ϵ = 3 · 102 MCu−1 · cm−1), 360 nm, 420 nm, and 680 nm at 77°K. CD bands were observed at 340, 400–450, and 650 nm (very broad). Methemocyanin was not reduced to O2-binding cuprous hemocyanin by dithionite, hydroxylamine, ascorbate, ferrocyanide, H2O2, or superoxide. Based upon the normal Curie behavior of the small EPR-detectable signal, the absence of paramagnetism, and some similarities of optical spectra between methemocyanin and oxyhemocyanin, we conclude that the diagmagnetic Cu(II) of this methemocyanin occurs in spin-coupled binuclear Cu(II) clusters having a configuration related to the binuclear Cu(II) cluster in oxyhemocyanin; but that inability of methemocyanin to undergo reductive reactivation, and the low molecular extinction coefficients of the optical absorption bands indicate that some chemical or steric alteration, perhaps peroxidatic in nature, takes place during its formation.  相似文献   

4.
1. Bovine liver arginase followed Michaelis-Menten kinetics in the pH range of 4.5-9.0. The variation of vi with pH implied that a basic group (pKa 8.7) functions at the catalytic site. 2. Treatment of the enzyme with N-ethylmaleimide showed that there are no critical sulfhydryl groups on the enzyme. 3. The less selective reagent, 3-bromopyruvate, caused biphasic inactivation which was unaffected by the presence of ornithine. 4. The data pointed against critical involvement of active site amino acid side chains in the catalytic sequence in arginase. 5. The observed pH-rate profile may reflect ionization of metal-bound water.  相似文献   

5.
It has been reported (Ruzicka, F.J., and Beinert, H. (1978) J. Biol. Chem. 253, 2514-2517) that aconitase in the oxidized state, as isolated, shows an electron paramagnetic resonance signal centered at g = 2.01, typical of high potential iron-sulfur proteins. Since the magnetic state corresponding to this signal has thus far only been found in tetranuclear iron-sulfur clusters in model compounds and proteins, it could be expected that aconitase also contains a [4Fe-4S] cluster. We show here that core extrusion, in the presence of hexamethylphosphoramide and o-xylyl-alpha,alpha'-dithiol and subsequent ligand exchange with p-trifluoromethylbenzenethiol yield absorption spectra typical of binuclear iron-sulfur clusters. According to the absorbance measured, the concentration of the extruded [2Fe-2S] cluster quantitatively accounts for the iron-sulfur content of the preparations examined. Preliminary studies of the 19F nuclear magnetic resonance spectrum obtained on extrusion with p-trifluoromethylbenzenethiol confirm the presence of a binuclear cluster in aconitase.  相似文献   

6.
7.
8.
The binuclear cupric copper cluster of Cancermagister methemocyanin prepared from hemocyanin and hydrogen peroxide is diamagnetic (1). Upon treatment with azide, it is transformed into magnetic dipolar coupled (paramagnetic) Cu(II) pairs and then into magnetically isolated Cu(II) complexes. This progressive uncoupling of the binuclear cupric pairs in methemocyanin is interpreted in terms of a relaxation of superexchange through one or more bridging ligands.  相似文献   

9.
Electron paramagnetic resonance (EPR) spectroscopy is a valuable tool for understanding the oxidation state and chemical environment of the Mn4Ca cluster of photosystem II. Since the discovery of the multiline signal from the S2 state, EPR spectroscopy has continued to reveal details about the catalytic center of oxygen evolution. At present EPR signals from nearly all of the S-states of the Mn4Ca cluster, as well as from modified and intermediate states, have been observed. This review article describes the various EPR signals obtained from the Mn4Ca cluster, including the metalloradical signals due to interaction of the cluster with a nearby organic radical.  相似文献   

10.
Stone EM  Chantranupong L  Georgiou G 《Biochemistry》2010,49(49):10582-10588
The active sites of eukaryotic arginase enzymes are strictly conserved, especially the first- and second-shell ligands that coordinate the two divalent metal cations that generate a hydroxide molecule for nucleophilic attack on the guanidinium carbon of l-arginine and the subsequent production of urea and l-ornithine. Here by using comprehensive pairwise saturation mutagenesis of the first- and second-shell metal ligands in human arginase I, we demonstrate that several metal binding ligands are actually quite tolerant to amino acid substitutions. Of >2800 double mutants of first- and second-shell residues analyzed, we found more than 80 unique amino acid substitutions, of which four were in first-shell residues. Remarkably, certain second-shell mutations could modulate the binding of both the nucleophilic water/hydroxide molecule and substrate or product ligands, resulting in activity greater than that of the wild-type enzyme. The data presented here constitute the first comprehensive saturation mutagenesis analysis of a metallohydrolase active site and reveal that the strict conservation of the second-shell metal binding residues in eukaryotic arginases does not reflect kinetic optimization of the enzyme during the course of evolution.  相似文献   

11.
12.
Exposure of photosystem II membranes to trypsin that has been treated to inhibit chymotrypsin activity produces limited hydrolysis of manganese stabilizing protein. Exposure to chymotrypsin under the same conditions yields substantial digestion of the protein. Further probing of the unusual insensitivity of manganese stabilizing protein to trypsin hydrolysis reveals that increasing the temperature from 4 to 25 degrees C will cause some acceleration in the rate of proteolysis. However, addition of low (100 microM) concentrations of NH2OH, that are sufficient to reduce, but not destroy, the photosystem II Mn cluster, causes a change in PS II-bound manganese stabilizing protein that causes it to be rapidly digested by trypsin. Immunoblot analyses with polyclonal antibodies directed against the N-terminus of the protein, or against the entire sequence show that trypsin cleavage produces two distinct peptide fragments estimated to be in the 17-20 kDa range, consistent with proposals that there are 2 mol of the protein/mol photosystem II. The correlation of trypsin sensitivity with Mn redox state(s) in photosystem II suggest that manganese stabilizing protein may interact either directly with Mn, or alternatively, that the polypeptide is bound to another protein of the photosystem II reaction center that is intimately involved in binding and redox activity of Mn.  相似文献   

13.
Incubation of soluble human liver arginase (L-arginine amidinohydrolase, EC 3.5.3.1) with p-hydroxymercuribenzoate resulted in the dissociation of the enzyme into active dimers. Addition of 2-mercaptoethanol resulted in the regeneration of the tetrameric enzyme. When arginase, bound covalently to nylon, was incubated with p-hydroxymercuribenzoate, matrix-bound dimers were obtained. Incubation of these species with 2-mercaptoethanol resulted in stable, unmodified dimers. Based on this dissociation of arginase, a model with D2-symmetry is suggested for this enzyme. The specific activity, the Km value for arginine, pH optimum and the inhibition constants for ornithine and lysine were determined for monomeric, dimeric and tetrameric forms. It is concluded that the behaviour of the active sites of the monomers is not substantially altered by the interaction of these species in the oligomeric molecule.  相似文献   

14.
1. Controlled tryptic digestion of native arginase from rat liver suggests that Mn2+ promotes a stable conformation as shown by the following features. 2. An 18-fold increase in the half-life of arginase activity in the presence of Mn2+ is produced. 3. The stability of subunit B of arginase is increased in the presence of Mn2+ as revealed by SDS-PAGE during the time-course of trypsin cleavage. 4. The different digestion products of arginase with and without Mn2+ appearing during the time-course of tryptic treatment. 5. Different activity/bands protein ratio at any time of the tryptic digestion in the incubation mixtures, with and without Mn2+, are apparent.  相似文献   

15.
L-Arginine is a common substrate for the enzymes arginase and nitric oxide synthase (NOS). Acute inhibition of arginase enzyme activity improves endothelium-dependent vasorelaxation, presumably by increasing availability of substrate for NOS. Arginase is activated by manganese (Mn), and the consumption of a Mn-deficient (Mn-) diet can result in low arginase activity. We hypothesize that endothelium-dependent vasorelaxation is greater in rats fed Mn- versus Mn sufficient (Mn+) diets. Newly weaned rats fed Mn+ diets (0.5 microg Mn/g; n = 12) versus Mn+ diets (45 microg Mn/g; n = 12) for 44 +/- 3 days had (i) lower liver and kidney Mn and arginase activity (P < or = 0.05), (ii) higher plasma L-arginine (P < or = 0.05), (iii) similar plasma and urine nitrate + nitrite, and (iv) similar staining for endothelial nitric oxide synthase in thoracic aorta. Vascular reactivity of thoracic aorta (approximately 720 microm i.d.) and small coronary arteries (approximately 110 microm i.d.) was evaluated using wire myographs. Acetylcholine (ACh; 10(-8)-10(-4) M) produced greater (P < or = 0.05) vasorelaxation in thoracic aorta from Mn- rats (e.g., maximal percent relaxation, 79 +/- 7%) versus Mn + rats (e.g., maximal percent relaxation, 54 +/- 9%) at 5 of 7 evaluated doses. Tension produced by NOS inhibition using N(G) monomethyl-L-arginine (L-NMMA; 10(-3) M) and vasorelaxation evoked by (i) arginase inhibition using difluoromethylornithine (DFMO; 10(-7) M), (ii) ACh (10(-8)-10(-4) M) in the presence of DFMO, and (iii) sodium nitroprusside (10(-9)-10(-4) M) were unaffected by diet. No differences existed between groups concerning these responses in small coronary arteries. These findings support our hypothesis that endothelium-dependent vasorelaxation is greater in aortic segments from rats that consume Mn- versus Mn+ diets; however, responses from small coronary arteries were unaffected.  相似文献   

16.
17.
18.
19.
Vogel A  Schilling O  Meyer-Klaucke W 《Biochemistry》2004,43(32):10379-10386
Zinc phosphodiesterase (ZiPD) is a member of the metallo-beta-lactamase family with a binuclear zinc binding site. As an experimental attempt to identify the metal ligands of Escherichia coli ZiPD and to investigate their function in catalysis, we mutationally exchanged candidate metal coordinating residues and performed kinetic and X-ray absorption spectroscopic analysis of the mutant proteins. All mutants (H66E, H69A, H141A, D212A, D212C, H231A, H248A, and H270A) show significantly lower catalytic rates toward the substrate bis(p-nitrophenyl)phosphate. Substrate binding, represented by the kinetic value K', remains unchanged for six mutants, whereas it is increased 3-4-fold for H231A and H270A. Accordingly, these two residues are supposed to be involved in substrate binding, whereas the others are more important for catalytic turnover and thus are assumed to be involved in zinc ligation. Structural insight into the metal binding of D212 was gained by zinc K-edge extended X-ray absorption fine structure (EXAFS). The sulfur coordination number of the cysteine mutant was found to be 1, demonstrating binding to both zinc metals in a bridging mode. Taken together with two residues from a strictly conserved sequence region within the metallo-beta-lactamase family, the metal site of ZiPD is proposed with H64, H66, and H141 coordinating ZnA, D68, H69, and H248 coordinating ZnB, and D212 bridging both metals. Surprisingly, the same coordination sphere is found in glyoxalase II. This is further substantiated by comparable EXAFS spectra of both native enzymes. This is the first example of the same metal site in two members of the metallo-beta-lactamase domain proteins catalyzing different reactions. The kinetic analysis of mutants provides unexpected insights into the reaction mechanism of ZiPD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号