首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schizophrenia is a common disorder with high heritability and a 10-fold increase in risk to siblings of probands. Replication has been inconsistent for reports of significant genetic linkage. To assess evidence for linkage across studies, rank-based genome scan meta-analysis (GSMA) was applied to data from 20 schizophrenia genome scans. Each marker for each scan was assigned to 1 of 120 30-cM bins, with the bins ranked by linkage scores (1 = most significant) and the ranks averaged across studies (R(avg)) and then weighted for sample size (N(sqrt)[affected casess]). A permutation test was used to compute the probability of observing, by chance, each bin's average rank (P(AvgRnk)) or of observing it for a bin with the same place (first, second, etc.) in the order of average ranks in each permutation (P(ord)). The GSMA produced significant genomewide evidence for linkage on chromosome 2q (PAvgRnk<.000417). Two aggregate criteria for linkage were also met (clusters of nominally significant P values that did not occur in 1,000 replicates of the entire data set with no linkage present): 12 consecutive bins with both P(AvgRnk) and P(ord)<.05, including regions of chromosomes 5q, 3p, 11q, 6p, 1q, 22q, 8p, 20q, and 14p, and 19 consecutive bins with P(ord)<.05, additionally including regions of chromosomes 16q, 18q, 10p, 15q, 6q, and 17q. There is greater consistency of linkage results across studies than has been previously recognized. The results suggest that some or all of these regions contain loci that increase susceptibility to schizophrenia in diverse populations.  相似文献   

2.
In order to detect linkage of the simulated complex disease Kofendrerd Personality Disorder across studies from multiple populations, we performed a genome scan meta-analysis (GSMA). Using the 7-cM microsatellite map, nonparametric multipoint linkage analyses were performed separately on each of the four simulated populations independently to determine p-values. The genome of each population was divided into 20-cM bin regions, and each bin was rank-ordered based on the most significant linkage p-value for that population in that region. The bin ranks were then averaged across all four studies to determine the most significant 20-cM regions over all studies. Statistical significance of the averaged bin ranks was determined from a normal distribution of randomly assigned rank averages. To narrow the region of interest for fine-mapping, the meta-analysis was repeated two additional times, with each of the 20-cM bins offset by 7 cM and 13 cM, respectively, creating regions of overlap with the original method. The 6-7 cM shared regions, where the highest averaged 20-cM bins from each of the three offsets overlap, designated the minimum region of maximum significance (MRMS). Application of the GSMA-MRMS method revealed genome wide significance (p-values refer to the average rank assigned to the bin) at regions including or adjacent to all of the simulated disease loci: chromosome 1 (p < 0.0001 for 160-167 cM, including D1), chromosome 3 (p-value < 0.0000001 for 287-294 cM, including D2), chromosome 5 (p-value < 0.001 for 0-7 cM, including D3), and chromosome 9 (p-value < 0.05 for 7-14 cM, the region adjacent to D4). This GSMA analysis approach demonstrates the power of linkage meta-analysis to detect multiple genes simultaneously for a complex disorder. The MRMS method enhances this powerful tool to focus on more localized regions of linkage.  相似文献   

3.
Genome scans of bipolar disorder (BPD) have not produced consistent evidence for linkage. The rank-based genome scan meta-analysis (GSMA) method was applied to 18 BPD genome scan data sets in an effort to identify regions with significant support for linkage in the combined data. The two primary analyses considered available linkage data for “very narrow” (i.e., BP-I and schizoaffective disorder–BP) and “narrow” (i.e., adding BP-II disorder) disease models, with the ranks weighted for sample size. A “broad” model (i.e., adding recurrent major depression) and unweighted analyses were also performed. No region achieved genomewide statistical significance by several simulation-based criteria. The most significant P values (<.01) were observed on chromosomes 9p22.3-21.1 (very narrow), 10q11.21-22.1 (very narrow), and 14q24.1-32.12 (narrow). Nominally significant P values were observed in adjacent bins on chromosomes 9p and 18p-q, across all three disease models on chromosomes 14q and 18p-q, and across two models on chromosome 8q. Relatively few BPD pedigrees have been studied under narrow disease models relative to the schizophrenia GSMA data set, which produced more significant results. There was no overlap of the highest-ranked regions for the two disorders. The present results for the very narrow model are promising but suggest that more and larger data sets are needed. Alternatively, linkage might be detected in certain populations or subsets of pedigrees. The narrow and broad data sets had considerable power, according to simulation studies, but did not produce more highly significant evidence for linkage. We note that meta-analysis can sometimes provide support for linkage but cannot disprove linkage in any candidate region.  相似文献   

4.
BACKGROUND: The Genome Search Meta-Analysis (GSMA) method enables researchers to pool results across genome-wide linkage studies, to increase the power to detect linkage. Results from individual studies must be extracted, with the maximum evidence for linkage placed into bins, usually of 30 cM width, and ranked within the study. Ranks are then summed across studies, with high summed ranks potentially showing evidence for linkage in the meta-analysis. OBJECTIVES: In this paper we study the properties of the GSMA method considering two different issues: (1) data binning from genome-wide results when indexed markers or graphs are available, based on either predefined boundary markers, or equal-length bins; (2) the use of selected instead of genome-wide results, using simulation to estimate power and type I error rates of GSMA. This is relevant when published papers show only summary results (e.g. with NPL score >1). Results: Using digitizing software to extract linkage statistics from graphs and assigning equal bin length is accurate, with the resulting ranking of bins similar to those defined through boundary markers. Simulation results show that power can fall substantially when genome-wide results are not available, particularly when only results from a single marker are available in a linked region. However there is no increase in false positive findings. CONCLUSIONS: The GSMA method is robust across different bin definitions and methods of data presentation and extraction. Using studies based on only the top ranked bins does not produce false positive results, but lacks power to detect genes conferring a modest increase in risk. Therefore, we advise that effort should be made to obtain genome-wide results from investigators or from published papers to avoid limiting the utility of the GSMA.  相似文献   

5.
Lee YH  Nath SK 《Human genetics》2005,118(3-4):434-443
To date, several susceptibility loci for systemic lupus erythematosus (SLE) have been identified by individual genome-wide scans, but many of these loci have shown inconsistent results across studies. Additionally, many individual studies are at the lower limit of acceptable power recommended for declaring significant linkage. The genome search meta-analysis (GSMA) has been proposed as a valid and robust method for combining several genome scan results. The aim of this study is to investigate whether there is any consistent evidence of linkage across multiple studies, and to identify novel SLE susceptibility loci by using GSMA method. Twelve genome scan results generated from nine independent studies have been used for the present GSMA. All together, the data consists of 605 families with 1,355 SLE affected individuals from three self-reported ethnicities; Caucasian, African-American, and Hispanic. For each study, the genome was divided into 120 bins (30 cM) and ranked according to the maximum evidence of linkage within each bin. The ranks were summed and averaged across studies following which the significance was assessed by the permutation tests. The present study identified two genomic locations at 6p22.3–6p21.1 and 16p12.3–16q12.2 that met genome-wide significance (p<0.000417). The identified region at 6p22.3–6p21.1 contains the HLA region. The combined p-values using Fisher’s method also supported the significance in these regions. Clustering of significant adjacent bins was observed for chromosomes 6 and 16. Additionally, there are 12 other bins with two point-wise p-values (Psumrnk and Pord) <0.05, suggesting that these bin regions are highly likely to contain SLE susceptibility loci. Among them, present GSMA also identified two novel regions at 4q32.1–4q34.3 and 13q13.2–13q22.2. However, separate analysis using only Caucasian populations identified the strongest evidence for linkage at chromosome 6p21.1–6q15 (Psumrnk=0.00021). One interesting novel region suggests that 3q22.1–3q25.33 (Psumrnk=0.01376) may be an ethnicity-specific SLE linkage. In summary, the present GSMA have identified two statistically significant genomic regions that reconfirmed the SLE linkage at chromosomes 6 and 16.  相似文献   

6.
GSMA: software implementation of the genome search meta-analysis method   总被引:1,自引:0,他引:1  
Meta-analysis can be used to pool results of genome-wide linkage scans. This is of great value in complex diseases, where replication of linked regions occurs infrequently. The genome search meta-analysis (GSMA) method is widely used for this analysis, and a computer program is now available to implement the GSMA.  相似文献   

7.
HEGESMA: genome search meta-analysis and heterogeneity testing   总被引:2,自引:0,他引:2  
SUMMARY: Heterogeneity and genome search meta-analysis (HEGESMA) is a comprehensive software for performing genome scan meta-analysis, a quantitative method to identify genetic regions (bins) with consistently increased linkage score across multiple genome scans, and for testing the heterogeneity of the results of each bin across scans. The program provides as an output the average of ranks and three heterogeneity statistics, as well as corresponding significance levels. Statistical inferences are based on Monte Carlo permutation tests. The program allows both unweighted and weighted analysis, with the weights for each study as specified by the user. Furthermore, the program performs heterogeneity analyses restricted to the bins with similar average ranks. AVAILABILITY: http://biomath.med.uth.gr.  相似文献   

8.
We conducted genome-wide linkage scans using both microsatellite and single-nucleotide polymorphism (SNP) markers. Regions showing the strongest evidence of linkage to alcoholism susceptibility genes were identified. Haplotype analyses using a sliding-window approach for SNPs in these regions were performed. In addition, we performed a genome-wide association scan using SNP data. SNPs in these regions with evidence of association (P 相似文献   

9.

Background  

Wise et al. introduced a rank-based statistical technique for meta-analysis of genome scans, the Genome Scan Meta-Analysis (GSMA) method. Levinson et al. recently described two generalizations of the GSMA statistic: (i) a weighted version of the GSMA statistic, so that different studies could be ascribed different weights for analysis; and (ii) an order statistic approach, reflecting the fact that a GSMA statistic can be computed for each chromosomal region or bin width across the various genome scan studies.  相似文献   

10.
The efficacy of linkage studies using microsatellites and single-nucleotide polymorphisms (SNPs) was evaluated. Analyzed data were supplied by the Collaborative Study on the Genetics of Alcoholism (COGA). Alcoholism was analyzed together with a simulated trait caused by a gene of known position, through a nonparametric linkage test (NPL). For the alcoholism trait, four densities of SNPs (1 SNP per 0.2 cM, 0.5 cM, 1 cM and 2 cM) showed higher peaks of NPL z scores and smaller significant p-values than the usual 10-cM density of microsatellites. However, the two highest densities of SNPs had unstable z score signals, and therefore were difficult to interpret. Analyzing a simulated trait with the same markers in the same pedigrees, we confirmed the higher power of all four densities of SNPs compared to the 10-cM microsatellites panel, although the existence of other confounding peaks was confirmed for maps that are denser than 1 SNP/cM. We further showed that estimating the gene position using SNPs is far less biased than using the usual panel of microsatellites (biases of 0-2 cM for SNPs vs. 8.9 cM for microsatellites). We conclude that using dense maps of SNPs in linkage analysis is more powerful and less biased than using the 10-cM maps of microsatellites. However, linkage signals can be unstable and difficult to interpret when several SNPs are genotyped per centimorgan. The power and accuracy of 1 SNP/cM or 1 SNP/2 cM may be sufficient in a genome-wide linkage scan while denser maps may be most useful in fine-gene mapping studies exploiting linkage disequilibrium.  相似文献   

11.
Computations for genome scans need to adapt to the increasing use of dense diallelic markers as well as of full-chromosome multipoint linkage analysis with either diallelic or multiallelic markers. Whereas suitable exact-computation tools are available for use with small pedigrees, equivalent exact computation for larger pedigrees remains infeasible. Markov chain-Monte Carlo (MCMC)-based methods currently provide the only computationally practical option. To date, no systematic comparison of the performance of MCMC-based programs is available, nor have these programs been systematically evaluated for use with dense diallelic markers. Using simulated data, we evaluate the performance of two MCMC-based linkage-analysis programs--lm_markers from the MORGAN package and SimWalk2--under a variety of analysis conditions. Pedigrees consisted of 14, 52, or 98 individuals in 3, 5, or 6 generations, respectively, with increasing amounts of missing data in larger pedigrees. One hundred replicates of markers and trait data were simulated on a 100-cM chromosome, with up to 10 multiallelic and up to 200 diallelic markers used simultaneously for computation of multipoint LOD scores. Exact computation was available for comparison in most situations, and comparison with a perfectly informative marker or interprogram comparison was available in the remaining situations. Our results confirm the accuracy of both programs in multipoint analysis with multiallelic markers on pedigrees of varied sizes and missing-data patterns, but there are some computational differences. In contrast, for large numbers of dense diallelic markers, only the lm_markers program was able to provide accurate results within a computationally practical time. Thus, programs in the MORGAN package are the first available to provide a computationally practical option for accurate linkage analyses in genome scans with both large numbers of diallelic markers and large pedigrees.  相似文献   

12.
We performed a linkage analysis on 25 extended multiplex Portuguese families segregating for bipolar disorder, by use of a high-density single-nucleotide-polymorphism (SNP) genotyping assay, the GeneChip Human Mapping 10K Array (HMA10K). Of these families, 12 were used for a direct comparison of the HMA10K with the traditional 10-cM microsatellite marker set and the more dense 4-cM marker set. This comparative analysis indicated the presence of significant linkage peaks in the SNP assay in chromosomal regions characterized by poor coverage and low information content on the microsatellite assays. The HMA10K provided consistently high information and enhanced coverage throughout these regions. Across the entire genome, the HMA10K had an average information content of 0.842 with 0.21-Mb intermarker spacing. In the 12-family set, the HMA10K-based analysis detected two chromosomal regions with genomewide significant linkage on chromosomes 6q22 and 11p11; both regions had failed to meet this strict threshold with the microsatellite assays. The full 25-family collection further strengthened the findings on chromosome 6q22, achieving genomewide significance with a maximum nonparametric linkage (NPL) score of 4.20 and a maximum LOD score of 3.56 at position 125.8 Mb. In addition to this highly significant finding, several other regions of suggestive linkage have also been identified in the 25-family data set, including two regions on chromosome 2 (57 Mb, NPL = 2.98; 145 Mb, NPL = 3.09), as well as regions on chromosomes 4 (91 Mb, NPL = 2.97), 16 (20 Mb, NPL = 2.89), and 20 (60 Mb, NPL = 2.99). We conclude that at least some of the linkage peaks we have identified may have been largely undetected in previous whole-genome scans for bipolar disorder because of insufficient coverage or information content, particularly on chromosomes 6q22 and 11p11.  相似文献   

13.
Current genome-wide linkage-mapping single-nucleotide polymorphism (SNP) panels with densities of 0.3 cM are likely to have increased intermarker linkage disequilibrium (LD) compared to 5-cM microsatellite panels. The resulting difference in haplotype frequencies versus that predicted may affect multipoint linkage analysis with ungenotyped founders; a common haplotype may be assumed to be rare, leading to inflation of identical-by-descent (IBD) allele-sharing estimates and evidence for linkage. Using data simulated for the Genetic Analysis Workshop 14, we assessed bias in allele-sharing measures and nonparametric linkage (NPL all) and Kong and Cox LOD (KC-LOD) scores in a targeted analysis of regions with and without LD and with and without genes. Using over 100 replicates, we found that if founders were not genotyped, multipoint IBD estimates and delta parameters were modestly inflated and NPL all and KC-LOD scores were biased upwards in the region with LD and no gene; rather than centering on the null, the mean NPL all and KC-LOD scores were 0.51 +/- 0.91 and 0.19 +/- 0.38, respectively. Reduction of LD by dropping markers reduced this upward bias. These trends were not seen in the non-LD region with no gene. In regions with genes (with and without LD), a slight loss in power with dropping markers was suggested. These results indicate that LD should be considered in dense scans; removal of markers in LD may reduce false-positive results although information may also be lost. Methods to address LD in a high-throughput manner are needed for efficient, robust genomic scans with dense SNPs.  相似文献   

14.
ABSTRACT: Type 2 diabetes (2DM), obesity, and coronary artery disease (CAD) are frequently coexisted being as key components of metabolic syndrome. Whether there is shared genetic background underlying these diseases remained unclear. We performed a meta-analysis of 35 genome screens for 2DM, 36 for obesity or body mass index (BMI)-defined obesity, and 21 for CAD using genome search meta-analysis (GSMA), which combines linkage results to identify regions with only weak evidence and provide genetic interactions among different diseases. For each study, 120 genomic bins of approximately 30 cM were defined and ranked according to the best linkage evidence within each bin. For each disease, bin 6.2 achieved genomic significanct evidence, and bin 9.3, 10.5, 16.3 reached suggestive level for 2DM. Bin 11.2 and 16.3, and bin 10.5 and 9.3, reached suggestive evidence for obesity and CAD respectively. In pooled all three diseases, bin 9.3 and 6.5 reached genomic significant and suggestive evidence respectively, being relatively much weaker for 2DM/CAD or 2DM/obesity or CAD/obesity. Further, genomewide significant evidence was observed of bin 16.3 and 4.5 for 2DM/obesity, which is decreased when CAD was added. These findings indicated that bin 9.3 and 6.5 are most likely to be shared by 2DM, obesity and CAD. And bin 16.3 and 4.5 are potentially common regions to 2DM and obesity only. The observed shared susceptibility regions imply a partly overlapping genetic aspects of disease development. Fine scanning of these regions will definitely identify more susceptibility genes and causal variants.  相似文献   

15.
Human geneticists are increasingly turning to study designs based on very large sample sizes to overcome difficulties in studying complex disorders. This in turn almost always requires multi-site data collection and processing of data through centralized repositories. While such repositories offer many advantages, including the ability to return to previously collected data to apply new analytic techniques, they also have some limitations. To illustrate, we reviewed data from seven older schizophrenia studies available from the NIMH-funded Center for Collaborative Genomic Studies on Mental Disorders, also known as the Human Genetics Initiative (HGI), and assessed the impact of data cleaning and regularization on linkage analyses. Extensive data regularization protocols were developed and applied to both genotypic and phenotypic data. Genome-wide nonparametric linkage (NPL) statistics were computed for each study, over various stages of data processing. To assess the impact of data processing on aggregate results, Genome-Scan Meta-Analysis (GSMA) was performed. Examples of increased, reduced and shifted linkage peaks were found when comparing linkage results based on original HGI data to results using post-processed data within the same set of pedigrees. Interestingly, reducing the number of affected individuals tended to increase rather than decrease linkage peaks. But most importantly, while the effects of data regularization within individual data sets were small, GSMA applied to the data in aggregate yielded a substantially different picture after data regularization. These results have implications for analyses based on other types of data (e.g., case-control GWAS or sequencing data) as well as data obtained from other repositories.  相似文献   

16.
Low bone mineral density (BMD) is a major risk factor for osteoporotic fracture. Studies of BMD in families and twins have shown that this trait is under strong genetic control. To identify regions of the genome that contain quantitative trait loci (QTL) for BMD, we performed independent genomewide screens, using two complementary study designs. We analyzed unselected nonidentical twin pairs (1,094 pedigrees) and highly selected, extremely discordant or concordant (EDAC) sib pairs (254 pedigrees). Nonparametric multipoint linkage (NPL) analyses were undertaken for lumbar spine and total-hip BMD in both cohorts and for whole-body BMD in the unselected twin pairs. The maximum evidence of linkage in the unselected twins (spine BMD, LOD 2.7) and the EDAC pedigrees (spine BMD, LOD 2.1) was observed at chromosome 3p21 (76 cM and 69 cM, respectively). These combined data indicate the presence, in this region, of a gene that regulates BMD. Furthermore, evidence of linkage in the twin cohort (whole-body BMD; LOD 2.4) at chromosome 1p36 (17 cM) supports previous findings of suggestive linkage to BMD in the region. Weaker evidence of linkage (LOD 1.0-2.3) in either cohort, but not both, indicates the locality of additional QTLs. These studies validate the use, in linkage analysis, of large cohorts of unselected twins phenotyped for multiple traits, and they highlight the importance of conducting genome scans in replicate populations as a prelude to positional cloning and gene discovery.  相似文献   

17.
Lin J  Liu KY 《BMC genetics》2005,6(Z1):S25
Several simulation studies have suggested that a high-density single-nucleotide polymorphisms (SNPs) marker set may be as useful as a traditional microsatellites (MS) marker set in performing whole-genome linkage analysis. However, very few studies have directly tested the SNPs-based genome-wide scan. In the present study, we compared the linkage results from the SNPs-based scan with a map density of 3-cM spacing with those from the MS scan using a 10-cM marker set among 300 nuclear families each from the Aipotu (AI), Danacaa (DA), and Karangar (KA) populations from the simulated Genetic Analysis Workshop 14 Problem 2 data. We found that information contents obtained from the SNPs scan were somewhat lower than those from the MS scan. However, the linkage results obtained from the two scans showed a high degree of similarity. Both scans identified a similar number of chromosomal regions attaining nominal significance (p < 0.05). Specifically, both scans detected confirmed evidence for linkage (NPL >or= 4.07, p = 2 x 10(-5)) to chromosome 1 in the AI families, chromosomes 1 and 3 in the DA families, and chromosomes 3, 5, and 9 in the KA families. An additional confirmed linkage to chromosome 5 in the AI families was detected only by the MS scan. We also observed slightly wider 1-LOD intervals for more of the SNP peaks than for the MS peaks, which is likely due to lower information contents for the SNPs. Subsequent fine-mapping association analysis further identified 2 to 3 markers significantly associated with disease status in each population; B03T3056, B03T3058, and B05T4139 in the AI population, B03T3056 and B03T3058 in the KA population, and B03T3056, B03T3057, and B03T3058 in the DA population. Among the four markers, three were chosen based on results obtained from the two scans, but one was solely from the SNP scan. In summary, our finding suggests that the SNP-based genome scan has the potential to be as powerful as the traditional MS-based scan and offers good identification of peak location for further fine-mapped association analysis.  相似文献   

18.
Huang J  Li C  Xu H  Gu J 《Journal of genetics》2008,87(1):75-81
We identified novel non-HLA-susceptible regions for ankylosing spondylitis (AS) by applying the genome-search-metaanalysis (GSMA) method to combine the previous four AS genomewide scan studies including 479 families with 1175 affected individuals. Three original genomescans were mainly analysed for Caucasian families and one analysed for Han Mongolian families. Ten bins had both Psumrnk and Pord <0.05, suggesting these bins most likely contain AS-linked loci. The 10 bins are 6.2, 16.3, 6.1, 3.3, 6.3, 16.4, 10.5, 17.1, 2.5 and 2.9. The most significant result of linkage was on chromosome 6p22.3-p21.1 (bin 6.2, Psumrnk <0.000417), where HLA loci are located. By addition of a genome scan of Chinese origin, our GSMA result further confirmed the HLA loci as the greatest susceptible region to AS and suggested that non-HLA loci chromosome 16q, 3p, 10q, 2p, 2q and 17p, may also contain AS-linked loci. The novel loci identified in our result give hints to further studies.  相似文献   

19.
Improved molecular understanding of the pathogenesis of type 2 diabetes is essential if current therapeutic and preventative options are to be extended. To identify diabetes-susceptibility genes, we have completed a primary (418-marker, 9-cM) autosomal-genome scan of 743 sib pairs (573 pedigrees) with type 2 diabetes who are from the Diabetes UK Warren 2 repository. Nonparametric linkage analysis of the entire data set identified seven regions showing evidence for linkage, with allele-sharing LOD scores > or =1.18 (P< or =.01). The strongest evidence was seen on chromosomes 8p21-22 (near D8S258 [LOD score 2.55]) and 10q23.3 (near D10S1765 [LOD score 1.99]), both coinciding with regions identified in previous scans in European subjects. This was also true of two lesser regions identified, on chromosomes 5q13 (D5S647 [LOD score 1.22] and 5q32 (D5S436 [LOD score 1.22]). Loci on 7p15.3 (LOD score 1.31) and 8q24.2 (LOD score 1.41) are novel. The final region showing evidence for linkage, on chromosome 1q24-25 (near D1S218 [LOD score 1.50]), colocalizes with evidence for linkage to diabetes found in Utah, French, and Pima families and in the GK rat. After dense-map genotyping (mean marker spacing 4.4 cM), evidence for linkage to this region increased to a LOD score of 1.98. Conditional analyses revealed nominally significant interactions between this locus and the regions on chromosomes 10q23.3 (P=.01) and 5q32 (P=.02). These data, derived from one of the largest genome scans undertaken in this condition, confirm that individual susceptibility-gene effects for type 2 diabetes are likely to be modest in size. Taken with genome scans in other populations, they provide both replication of previous evidence indicating the presence of a diabetes-susceptibility locus on chromosome 1q24-25 and support for the existence of additional loci on chromosomes 5, 8, and 10. These data should accelerate positional cloning efforts in these regions of interest.  相似文献   

20.
In a previous study we found evidence for an X-linked genetic component for familial typical migraine in two large Australian white pedigrees, designated MF7 and MF14. Significant excess allele sharing was indicated by nonparametric linkage (NPL) analysis using GENEHUNTER (P=0.031 and P=0.012, respectively), with a combined analysis of the two pedigrees showing further increased evidence for linkage, producing a maximum NPL score of 2.87 (P=0.011 ) at DXS 1123 on Xq27. The present study was aimed at refining the localization of the migraine X-chromosomal component by typing additional markers, performing haplotype analysis and applying a more powerful technique in the analysis of linkage data from these two pedigrees. Results from the haplotype analyses, coupled with linkage analyses that produced a peak GENEHUNTER-PLUS LOD* score of 2.388 (P=0.0005), provide compelling evidence for the presence of a migraine susceptibility locus on chromosome Xq24-28.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号