首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions of TBP-interacting protein (TIP26), TBP, and TFB from a hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 with TATA-DNA were examined by electrophoretic mobility shift assay. Tk-TFB formed a ternary complex with Tk-TBP and TATA-DNA. Tk-TIP26 did not inhibit the formation of this ternary complex, but interacted with it to form a TIP26/TFB/TBP/DNA quaternary complex. This interaction is rather weak, and a large excess of Tk-TIP26 over Tk-TBP is required to fully convert the TFB/TBP/DNA ternary complex to the quaternary complex. However, determination of the concentration of Tk-TIP26 and Tk-TBP in KOD1 cells by Western blotting analysis indicated that the concentration of Tk-TIP26 is approximately ten times that of Tk-TBP, suggesting that the quaternary complex might also form in vivo.  相似文献   

2.
The Listeria monocytogenes surface protein InlB mediates bacterial invasion into host cells by activating the human receptor tyrosine kinase Met. So far, it is unknown how InlB or the physiological Met ligand hepatocyte growth factor/scatter factor causes Met dimerization, which is considered a prerequisite for receptor activation. We determined two new structures of InlB, revealing a recurring, antiparallel, dimeric arrangement, in which the two protomers interact through the convex face of the leucine-rich repeat domain. The same contact is found in one structure of the InlB-Met complex. Mutations disrupting the interprotomeric contact of InlB reduced its ability to activate Met and downstream signaling. Conversely, stabilization of this crystal contact by two intermolecular disulfide bonds generates a constitutively dimeric InlB variant with exceptionally high signaling activity, which can stimulate cell motility and cell division. These data demonstrate that the signaling-competent InlB-Met complex assembles with 2:2 stoichiometry around a back-to-back InlB dimer, enabling the direct contact between the stalk region of two Met molecules.  相似文献   

3.
Enhanced structural insights into the folding energy landscape of the N-terminal dimerization domain of Escherichia coli tryptophan repressor, [2-66]2 TR, were obtained from a combined experimental and theoretical analysis of its equilibrium folding reaction. Previous studies have shown that the three intertwined helices in [2-66]2 TR are sufficient to drive the formation of a stable dimer for the full-length protein, [2-107]2 TR. The monomeric and dimeric folding intermediates that appear during the folding reactions of [2-66]2 TR have counterparts in the folding mechanism of the full-length protein. The equilibrium unfolding energy surface on which the folding and dimerization reactions occur for [2-66]2 TR was examined with a combination of native-state hydrogen exchange analysis, pepsin digestion and matrix-assisted laser/desorption mass spectrometry performed at several concentrations of protein and denaturant. Peptides corresponding to all three helices in [2-66]2 TR show multi-layered protection patterns consistent with the relative stabilities of the dimeric and monomeric folding intermediates. The observation of protection exceeding that offered by the dimeric intermediate in segments from all three helices implies that a segment-swapping mechanism may be operative in the monomeric intermediate. Protection greater than that expected from the global stability for a single amide hydrogen in a peptide from the C-helix possibly and another from the A-helix may reflect non-random structure, possibly a precursor for segment swapping, in the urea-denatured state. Native topology-based model simulations that correspond to a funnel energy landscape capture both the monomeric and dimeric intermediates suggested by the HX MS data and provide a rationale for the progressive acquisition of secondary structure in their conformational ensembles.  相似文献   

4.
5.
The GrpE heat shock protein from Escherichia coli has a homodimeric structure. The dimer interface encompasses two long alpha-helices at the NH(2)-terminal end from each monomer (forming a "tail"), which lead into a small four-helix bundle from which each monomer contributes two short sequential alpha-helices in an antiparallel topological arrangement. We have created a number of different deletion mutants of GrpE that have portions of the dimer interface to investigate requirements for dimerization and to study four-helix bundle formation. Using chemical crosslinking and analytical ultracentrifugation techniques to probe for multimeric states, we find that a mutant containing only the long alpha-helical tail portion (GrpE1-88) is unable to form a dimer, most likely due to a decrease in alpha-helical content as determined by circular dichroism spectroscopy, thus one reason for a dimeric structure for the GrpE protein is to support the tail region. Mutants containing both of the short alpha-helices (GrpE1-138 and GrpE88-197) are able to form a dimer and presumably the four-helix bundle at the dimer interface. These two mutants have equilibrium constants for the monomer-dimer equilibrium that are very similar to the full-length protein suggesting that the tail region does not contribute significantly to the stability of the dimer. Interestingly, one mutant that contains just one of the short alpha-helices (GrpE1-112) exists as a tetrameric species, which presumably is forming a four-helix bundle structure. A proposed model is discussed for this mutant and its relevance for factors influencing four-helix bundle formation.  相似文献   

6.
Calcium- and integrin-binding protein 1 (CIB1) is involved in the process of platelet aggregation by binding the cytoplasmic tail of the alpha(IIb) subunit of the platelet-specific integrin alpha(Iib)beta(3). Although poorly understood, it is widely believed that CIB1 acts as a global signaling regulator because it is expressed in many tissues that do not express integrin alpha(Iib)beta(3). We report the structure of human CIB1 to a resolution of 2.3 A, crystallized as a dimer. The dimer interface includes an extensive hydrophobic patch in a crystal form with 80% solvent content. Although the dimer form of CIB1 may not be physiologically relevant, this intersub-unit surface is likely to be linked to alpha(IIb) binding and to the binding of other signaling partner proteins. The C-terminal domain of CIB1 is structurally similar to other EF-hand proteins such as calmodulin and calcineurin B. Despite structural homology to the C-terminal domain, the N-terminal domain of CIB1 lacks calcium-binding sites. The structure of CIB1 revealed a complex with a molecule of glutathione in the reduced state bond to the N-terminal domain of one of the two subunits poised to interact with the free thiol of C35. Glutathione bound in this fashion suggests CIB1 may be redox regulated. Next to the bound GSH, the orientation of residues C35, H31, and S48 is suggestive of a cysteine-type protein phosphatase active site. The potential enzymatic activity of CIB1 is discussed and suggests a mechanism by which it regulates a wide variety of proteins in cells in addition to platelets.  相似文献   

7.
The receptor-type protein tyrosine phosphatases (RPTPs) are integral membrane proteins composed of extracellular adhesion molecule-like domains, a single transmembrane domain, and a cytoplasmic domain. The cytoplasmic domain consists of tandem PTP domains, of which the D1 domain is enzymatically active. RPTPkappa is a member of the R2A/IIb subfamily of RPTPs along with RPTPmu, RPTPrho, and RPTPlambda. Here, we have determined the crystal structure of catalytically active, monomeric D1 domain of RPTPkappa at 1.9 A. Structural comparison with other PTP family members indicates an overall classical PTP architecture of twisted mixed beta-sheets flanked by alpha-helices, in which the catalytically important WPD loop is in an unhindered open conformation. Though the residues forming the dimeric interface in the RPTPmu structure are all conserved, they are not involved in the protein-protein interaction in RPTPkappa. The N-terminal beta-strand, formed by betax association with betay, is conserved only in RPTPs but not in cytosolic PTPs, and this feature is conserved in the RPTPkappa structure forming a beta-strand. Analytical ultracentrifugation studies show that the presence of reducing agents and higher ionic strength are necessary to maintain RPTPkappa as a monomer. In this family the crystal structure of catalytically active RPTPmu D1 was solved as a dimer, but the dimerization was proposed to be a consequence of crystallization since the protein was monomeric in solution. In agreement, we show that RPTPkappa is monomeric in solution and crystal structure.  相似文献   

8.
Circular dichroism spectra of proteins are sensitive to protein secondary structure. The CD spectra of alpha-rich proteins are similar to those of model alpha-helices, but beta-rich proteins exhibit CD spectra that are reminiscent of CD spectra of either model beta-sheets or unordered polypeptides. The existence of these two types of CD spectra for beta-rich proteins form the basis for their classification as betaI- and betaII-proteins. Although the conformation of beta-sheets is largely responsible for the CD spectra of betaI-proteins, the source of betaII-protein CD, which resembles that of unordered polypeptides, is not completely understood. The CD spectra of unordered polypeptides are similar to that of the poly(Pro)II helix, and the poly(Pro)II-type (P2) structure forms a significant fraction of the unordered conformation in globular proteins. We have compared the beta-sheet and P2 structure contents in beta-rich proteins to understand the origin of betaII-protein CD. We find that betaII-proteins have a ratio of P2 to beta-sheet content greater than 0.4, whereas for betaI-proteins this ratio is less than 0.4. The beta-sheet content in betaI-proteins is generally higher than that in betaII-proteins. The origin of two classes of CD spectra for beta-rich proteins appears to lie in their relative beta-sheet and P2 structure contents.  相似文献   

9.
Merlino A  Picone D  Ercole C  Balsamo A  Sica F 《Biochimie》2012,94(5):1108-1118
3D domain swapping is the process by which two or more protein molecules exchange part of their structure to form intertwined dimers or higher oligomers. Bovine pancreatic ribonuclease (RNase A) is able to swap the N-terminal α-helix (residues 1-13) and/or the C-terminal β-strand (residues 116-124), thus forming a variety of oligomers, including two different dimers. Cis-trans isomerization of the Asn113-Pro114 peptide group was observed when the protein formed the C-terminal swapped dimer. To study the effect of the substitution of Pro114 on the swapping process of RNase A, we have prepared and characterized the P114A monomeric and dimeric variants of the enzyme. In contrast with previous reports, the crystal structure and NMR data on the monomer reveals a mixed cis-trans conformation for the Asn113-Ala114 peptide group, whereas the X-ray structure of the C-terminal swapped dimer of the variant is very close to that of the corresponding dimer of RNase A. The mutation at the C-terminus affects the capability of the N-terminal α-helix to swap and the stability of both dimeric forms. The present results underscore the importance of the hydration shell in determining the cross-talk between the chain termini in the swapping process of RNase A.  相似文献   

10.
Splicing of eukaryal intron-containing tRNAs requires the action of the heterotetrameric splicing endonuclease, which is composed of two catalytic subunits, Sen34 and Sen2, and two structural subunits, Sen15 and Sen54. Here we report the solution structure of the human tRNA splicing endonuclease subunit HsSen15. To facilitate the structure determination, we removed the disordered 35 N-terminal and 14 C-terminal residues of the full-length protein to produce HsSen15(36-157). The structure of HsSen15(36-157), the first for a subunit of a eukaryal splicing endonuclease, revealed that the protein possesses a novel homodimeric fold. Each monomer consists of three alpha-helices and a mixed antiparallel/parallel beta-sheet, arranged in a topology similar to that of the C-terminal domain of Methanocaldococcus jannaschii endonuclease. The dimeric interface is dominated by a beta-barrel structure, formed by face-to-face packing of two, three-stranded beta-sheets. Each of the beta-sheets results from reciprocal parallel pairing of one beta-strand from one subunit with two other beta-strands from the symmetric subunit. The structural model provides insights into the functional assembly of the human tRNA splicing endonuclease.  相似文献   

11.
TTHA0727 is a conserved hypothetical protein from Thermus thermophilus HB8, with a molecular mass of 12.6 kDa. TTHA0727 belongs to the carboxymuconolactone decarboxylase (CMD) family (Pfam 02627). A sequence comparison with its homologs suggested that TTHA0727 is a distinct protein from alkylhydroperoxidase AhpD and gamma-carboxymuconolactone decarboxylase in the CMD family. Here we report the 1.9 A crystal structure of TTHA0727 (PDB ID: 2CWQ) determined by the multiwavelength anomalous dispersion method. The TTHA0727 monomer structure consists of seven alpha-helices (alpha1-alpha7) and one short 3(10)-helix. The crystal structure and the analytical ultracentrifugation revealed that TTHA0727 forms a hexameric ring structure in solution. The electrostatic potential distribution on the solvent-accessible surface of the TTHA0727 hexamer showed that positively charged regions exist on the side of the ring structure, suggesting that TTHA0727 interacts with some negatively charged molecules. A structural homology search revealed that the structure of three alpha-helices (alpha4-alpha6) is remarkably conserved, suggesting that it is the common structural motif for the CMD family proteins. In addition, the nine residues of the N-terminal tag bound to the cleft region between alpha1 and alpha3 in chains A and B of TTHA0727, implying that this region is the putative binding/active site for some small molecules.  相似文献   

12.
The inhibition of phospholipase A(2)s (PLA(2)s) is of pharmacological and therapeutic interest because these enzymes are involved in several inflammatory diseases. Elaidoylamide is a powerful inhibitor of a neurotoxic PLA(2) from the Vipera ammodytes meridionalis venom. The X-ray structure of the enzyme-inhibitor complex reveals a new mode of Asp49 PLA(2) inhibition by a fatty acid hydrocarbon chain. The structure contains two identical homodimers in the asymmetric unit. In each dimer one subunit is rotated by 180 degrees with respect to the other and the two molecules are oriented head-to-tail. One molecule of elaidoylamide is bound simultaneously to the substrate binding sites of two associated neurotoxic phospholipase A(2) molecules. The inhibitor binds symmetrically to the hydrophobic channels of the two monomers. The structure can be used to design anti-inflammatory drugs.  相似文献   

13.
14.
In biological systems, proteins rarely act as isolated monomers. Association to dimers or higher oligomers is a commonly observed phenomenon. As an example, small heat shock proteins form spherical homo-oligomers of mostly 24 subunits, with the dimeric α-crystallin domain as the basic structural unit. The structural hierarchy of this complex is key to its function as a molecular chaperone. In this article, we analyze the folding and association of the basic building block, the α-crystallin domain dimer, from the hyperthermophilic archaeon Methanocaldococcus jannaschii Hsp16.5 in detail. Equilibrium denaturation experiments reveal that the α-crystallin domain dimer is highly stable against chemical denaturation. In these experiments, protein dissociation and unfolding appear to follow an “all-or-none” mechanism with no intermediate monomeric species populated. When the mechanical stability was determined by single-molecule force spectroscopy, we found that the α-crystallin domain dimer resists high forces when pulled at its termini. In contrast to bulk denaturation, stable monomeric unfolding intermediates could be directly observed in the mechanical unfolding traces after the α-crystallin domain dimer had been dissociated by force. Our results imply that for this hyperthermophilic member of the small heat shock protein family, assembly of the spherical 24mer starts from folded monomers, which readily associate to the dimeric structure required for assembly of the higher oligomer.  相似文献   

15.
Dynein light chain protein, a part of the cytoplasmic motor assembly, is a homodimer at physiological pH and dissociates below pH 4.5 to a monomer. The dimer binds to a variety of cargo, whereas the monomer does not bind any of the target proteins. We report here the pH induced stepwise structural and motional changes in the protein, as derived from line broadening and 15N transverse relaxation measurements. At pH 7 and below until 5, partial protonation and consequent interconversion between molecules carrying protonated and neutral histidines, causes conformational dynamics in the dimeric protein and this increases with decreasing pH. Enhanced dynamics in turn leads to partial loosening of the structure. This would have implications for different efficacies of binding by target proteins due to small variations in pH in different parts of the cell, and hence for cargo trafficking from one part to another. Below pH 5, enhanced charge repulsions, partial loss of hydrophobic interactions, and destabilization of H-bonds across the dimer interface cause further loosening of the dimeric structure, leading eventually to the dissociation of the dimer.  相似文献   

16.
The p53 tumor suppressor oligomerization domain, a dimer of two primary dimers, is an independently folding domain whose subunits consist of a beta-strand, a tight turn and an alpha-helix. To evaluate the effect of hydrophobic side-chains on three-dimensional structure, we substituted residues Phe341 and Leu344 in the alpha-helix with other hydrophobic amino acids. Substitutions that resulted in residue 341 having a smaller side-chain than residue 344 switched the stoichiometry of the domain from tetrameric to dimeric. The three-dimensional structure of one such dimer was determined by multidimensional NMR spectroscopy. When compared with the primary dimer of the wild-type p53 oligomerization domain, the mutant dimer showed a switch in alpha-helical packing from anti-parallel to parallel and rotation of the alpha-helices relative to the beta-strands. Hydrophobic side-chain size is therefore an important determinant of a protein fold.  相似文献   

17.
X Ji  P Zhang  R N Armstrong  G L Gilliland 《Biochemistry》1992,31(42):10169-10184
The crystal structure of a mu class glutathione S-transferase (EC 2.5.1.18) from rat liver (isoenzyme 3-3) in complex with the physiological substrate glutathione (GSH) has been solved at 2.2-A resolution by multiple isomorphous replacement methods. The enzyme crystallized in the monoclinic space group C2 with unit cell dimensions of a = 87.98 A, b = 69.41 A, c = 81.34 A, and beta = 106.07 degrees. Oligonucleotide-directed site-specific mutagenesis played an important role in the solution of the structure in that the cysteine mutants C86S, C114S, and C173S were used to help locate the positions of mercuric ion sites in nonisomorphous derivatives with ethylmercuric phosphate and to align the sequence with the model derived from MIR phases. A complete model for the protein was not obtained until part of the solvent structure was interpreted. The dimer in the asymmetric unit refined to a crystallographic R = 0.171 for 19,298 data and I > or = 1.5 sigma (I). The final model consists of 4150 atoms, including all non-hydrogen atoms of 434 amino acid residues, two GSH molecules, and oxygen atoms of 474 water molecules. The dimeric enzyme is globular in shape with dimensions of 53 x 62 x 56 A. Crystal contacts are primarily responsible for conformational differences between the two subunits which are related by a noncrystallographic 2-fold axis. The structure of the type 3 subunit can be divided into two domains separated by a short linker, a smaller alpha/beta domain (domain I, residues 1-82), and a larger alpha domain (domain II, residues 90-217). Domain I contains four beta-strands which form a central mixed beta-sheet and three alpha-helices which are arranged in a beta alpha beta alpha beta beta alpha motif. Domain II is composed of five alpha-helices. Domain I can be considered the glutathione binding domain, while domain II seems to be primarily responsible for xenobiotic substrate binding. The active site is located in a deep (19-A) cavity which is composed of three relatively mobile structural elements: the long loop (residues 33-42) of domain I, the alpha 4/alpha 5 helix-turn-helix segment, and the C-terminal tail. GSH is bound at the active site in an extended conformation at one end of the beta-sheet of domain I with its backbone facing the cavity and the sulfur pointing toward the subunit to which it is bound.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
While many Type II restriction enzymes are dimers with a single DNA-binding cleft between the subunits, SfiI is a tetramer of identical subunits. Two of its subunits (a dimeric unit) create one DNA-binding cleft, and the other two create a second cleft on the opposite side of the protein. The two clefts bind specific DNA cooperatively to give a complex of SfiI with two recognition sites. This complex is responsible for essentially all of the DNA-cleavage reactions by SfiI: virtually none is due to the complex with one site. The communication between the DNA-binding clefts was examined by disrupting one of the very few polar interactions in the otherwise hydrophobic interface between the dimeric units: a tyrosine hydroxyl was removed by mutation to phenylalanine. The mutant protein remained tetrameric in solution and could bind two DNA sites. But instead of being activated by binding two sites, like wild-type SfiI, it showed maximal activity when bound to a single site and had a lower activity when bound to two sites. This interaction across the dimer interface thus enforces in wild-type SfiI a cooperative transition between inactive and active states in both dimers, but without this interaction as in the mutant protein, a single dimer can undergo the transition to give a stable intermediate with one inactive dimer and one active dimer.  相似文献   

19.
The protein FkpA from the periplasm of Escherichia coli exhibits both cis/trans peptidyl-prolyl isomerase (PPIase) and chaperone activities. The crystal structure of the protein has been determined in three different forms: as the full-length native molecule, as a truncated form lacking the last 21 residues, and as the same truncated form in complex with the immunosuppressant ligand, FK506. FkpA is a dimeric molecule in which the 245-residue subunit is divided into two domains. The N-terminal domain includes three helices that are interlaced with those of the other subunit to provide all inter-subunit contacts maintaining the dimeric species. The C-terminal domain, which belongs to the FK506-binding protein (FKBP) family, binds the FK506 ligand. The overall form of the dimer is V-shaped, and the different crystal structures reveal a flexibility in the relative orientation of the two C-terminal domains located at the extremities of the V. The deletion mutant FkpNL, comprising the N-terminal domain only, exists in solution as a mixture of monomeric and dimeric species, and exhibits chaperone activity. By contrast, a deletion mutant comprising the C-terminal domain only is monomeric, and although it shows PPIase activity, it is devoid of chaperone function. These results suggest that the chaperone and catalytic activities reside in the N and C-terminal domains, respectively. Accordingly, the observed mobility of the C-terminal domains of the dimeric molecule could effectively adapt these two independent folding functions of FkpA to polypeptide substrates.  相似文献   

20.
MOA, a lectin from the mushroom Marasmius oreades, is one of the few reagents that specifically agglutinate blood group B erythrocytes. Further, it is the only lectin known to have exclusive specificity for Galalpha(1,3)Gal-containing sugar epitopes, which are antigens that pose a severe barrier to animal-to-human organ transplantation. We describe here the structure of MOA at 2.4 A resolution, in complex with the linear trisaccharide Galalpha(1,3)Galbeta(1,4)GlcNAc. The structure is dimeric, with two distinct domains per protomer: the N-terminal lectin module adopts a ricinB/beta-trefoil fold and contains three putative carbohydrate-binding sites, while the C-terminal domain serves as a dimerization interface. This latter domain, which has an unknown function, reveals a novel fold with intriguing conservation of an active site cleft. A number of indications suggest that MOA may have an enzymatic function in addition to the sugar-binding properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号