首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用大鼠海马脑片体外缺血模型观察钙离子和蛋白激酶C(PKC)对神经元胞外谷氨酸(GLU)堆积的影响,结果显示:海马脑片在体外“缺血”10min,GLU在胞外的浓度增加4倍(从32±4升高到113±10pmol/(min.mgPr).n=6).N型钙通道拮抗剂蝙蝠葛苏林碱(DSL)或无钙培养液均能有效抑制这种浓度的升高(P<0.01).提示缺血10min引发的GLU浓度升高是受Ca2+内流调控的.当脑片在缺血状况下孵育30min,DSL只部分抑制这种GLU堆积,而无钙培养液则无影响,但这额外的GLU堆积可被PKC抑制剂H-7完全阻断,而被PKC激动剂PDB所加强;且不受钙调蛋白抑制剂Calmdazolium和8-溴-cAMP影响.提示缺血30min,胞外GLU的堆积受钙内流和PKC双重调控。  相似文献   

2.
Ca^2+/CaM PKⅡ与脑缺血兴奋毒性关系的研究   总被引:1,自引:0,他引:1  
采用大鼠海马脑片体外缺血模型,观察了“缺血”或谷氨酸及氯胺酮对海马脑片Ca ̄(2+)/CaMPKⅡ活性的影响,同时观察了缺血对神经元胞外谷氨酸堆积的影响。结果如下:(1)Ca ̄(2+)/CaMPKⅡ活性随“缺血”时间的延长而逐渐下降,缺血10,20和30min,酶活性分别为对照组的63%,44%和29%(10min,P<0.002;20和30mm,P<0.001),提示该酶对缺血非常敏感。(2)单纯过量外源性谷氨酸作用30min,能引起酶活性显著下降到仅为对照组的24%,提示脑缺血时酶活性的抑制与兴奋毒性有关。(3)海马脑片在体外缺血30min时,谷氨酸在胞外的堆积增加2倍多(从128±20升高到431±74nmol·mg ̄(-1)pro·min ̄(-1),n=6)。(4)氯胺酮对“缺血”和单纯外源性谷氨酸所诱导的酶活性抑制均有明显的拮抗作用,但其拮抗作用显著不同,前者可使酶活性恢复至对照的62%,后者高达92%。说明脑缺血引起酶活性下降不仅与NMDA受体有关,而且与其它因素有关。  相似文献   

3.
Yao XH  Wang PY  Pang YZ  Su JY  Tang CS 《生理学报》1998,50(2):188-192
本工作在二磷酸腺苷(ADP)活化的大鼠血小板上,观察精-甘-天冬-丝上肽(RGDS肽)对血小板聚集、蛋白磷酸化、蛋白激酶C和丝裂素活化蛋白激酶活性的影响。结果发现,50μmol/LADP引起血小板聚集时,蛋白激酶C(PKC0及丝裂经蛋白激酶(MAPK)活性增加,并引起95和66kD蛋白磷酸化。应用50,100和200μmol/LRGDS肽与基共同孵育,呈浓度依赖地抑制ADP引起的血小板聚集和对PK  相似文献   

4.
Li Y  Pei L  Zhang GY 《生理学报》2000,52(2):137-142
用蒙古沙土鼠双侧颈总动脉结扎(BCAO)前脑缺血模型,研究缺血/再灌对海马突触体蛋白酪氨酸磷酸休的影响及NMDA受体(NR)非竞争性拮抗剂氯胺酮(Ketamine,KT)、L-型电压门控钙离子通道(L-type voltage gatedcalcium channel,L-型VGCC)拮抗剂硝苯吡啶(nifedipine,ND)及非NR拮抗6,7-二硝基喹恶啉上卫四(6,7-di-nitropu  相似文献   

5.
用制霉菌素穿孔膜片钳方法研究5-HT和NA对急性分离的大鼠骶髓后连合核神经元甘氨酸门控氯离子通道电流(IGly)的调控作用及其胞内机制。发现:(1)5-HT激活与非胰岛激活蛋白(IAP)敏感型G蛋白偶联的5-HT2受体亚型,激活磷脂酶C(PLC),增加甘油二酯(DAG)的生成。DAG增强不依赖Ca2+的新型PKC(nPKC)的活性,从而增强IGly;(2)NA激活与IAP敏感型G蛋白偶联的α2受体,抑制腺苷酸环化酶(AC),减少cAMP的生成,使PKA活性降低,从而增强IGly。  相似文献   

6.
Xue BJ  Wang ZA  He RR  Ho SY 《生理学报》1998,50(1):55-60
用细胞外记录单位放电技术,在大鼠海马脑片上观察了L-精氨酸(L-arg)、N-硝基L-精氨酸(L-NNA)及SIN-1对谷氨酸(glutamate,Glu)诱导的CA1区神经元放电的影响。旨在了解L-精氨酸:NO通路在谷氨酸诱发的海马放电中的作用及其可能的机制。结果如下:(1)用GlU(0.5mmol/L)灌流海马脑片1min,12个放电单位放电频率明显增加,表现为癫痫样放电;(2)海马脑片2mi  相似文献   

7.
褪黑素对大鼠海马神经元谷氨酸所致毒性的拮抗作用   总被引:3,自引:0,他引:3  
在大鼠海马脑片上电刺激Schaffer 侧支纤维, 胞外记录CA1 区锥体细胞层诱发群体锋电位(population spike,PS) , 观察灌流谷氨酸(Glu) 和褪黑素(MEL) 对PS的影响。结果显示:5-0 mmol/L浓度的Glu 可使PS值下降至对照值的4-1 % ; MEL(0-4 、0-5 和0-6 μmol/L) 与5-0 mmol/LGlu 混合给药,PS值分别变化为对照值的14-7 % 、105-2% 、24-3 % ; MEL(0-5 μmol/L) 、Glu (5-0 mmol/L) , 与赛庚啶(CDP,0-5 μmol/L) 混合给药,PS值下降至0 。上述结果提示,5-0 mmol/L浓度的Glu 有神经毒性作用, 但可为MEL拮抗, 这可能由5HT受体所介导。  相似文献   

8.
本文采用Ca~2+指示剂的分光光谱法测定巨噬细胞(Mφ)内Ca~2+浓度([Ca~2+]i)、APAAP桥联酶标法检测Mφ膜上Ⅰa抗原的表达,研究肌醇磷脂代谢中第二信使分子甘油二酯(DG)在去甲肾上腺素(NE)促进MφⅠa表达效应中的作用,以进一步探讨NE效应的跨膜信息传递机制。结果表明:蛋白激酶C(PKC)抑制剂4αPDD(25μg/ml)虽不影响NE(10 ̄-8mol/L)升高Mφ[Ca ̄2+]i的效应,却显著减弱了NE促进MφⅠa抗原表达的效应;而PKC激动剂PMA(10nmol/L)本身促进MφⅠa抗原表达的作用不明显,也不能进一步增强NE促进MφⅠa抗原表达的效应。结果提示:DG激活的PKC系统也参与了NE促进MφⅠa抗原表达的信息传递过程,并与另一第二信使分子肌醇-1,4,5-三磷酸(IP_3)介导的Ca ̄2+途径协同发挥作用。  相似文献   

9.
PKC、PKA和TPK在血小板激活中的作用   总被引:1,自引:0,他引:1  
利用~(32)P-NaH_2PO_4标记猪血小板,然后以PMA、凝血酶、PGE_1、腺苷等处理,结果表明,随着PMA激活PKC,血小板发生聚集。35μmol/LPGE_1或1mmol/LdbcAMP不能抑制50nmol/LPMA诱导的血小板聚集,腺苷却能抑制PMA诱导的血小板聚集(EC_(50)=0.1mmol/L),db-cAMP、腺苷都不能抑制100nmol/LPMA诱导的40kD蛋白磷酸化。PKA激活不能抑制PMA激活的PKC。在PMA、凝血酶激活的血小板中,PKC、TPK都发生激活,40kD底物既是PKC的底物又是TPK的底物,PKC和TPK在血小板聚集中起着重要的调节作用。  相似文献   

10.
中国伞滑刃线虫属─新纪录(真滑刃目:寄生滑刃科)   总被引:1,自引:0,他引:1  
中国伞滑刃线虫属─新纪录(真滑刃目:寄生滑刃科)THENEWRECORDOFBURSAPHELENCHUSFROMCHINA(APHELENCHIDA:PARASITAPHELENCHIDAE)¥YINGan-liu;FANGYu-sheng(Dep...  相似文献   

11.
We have directly observed the effects of activating presynaptic D1-like and D2-like dopamine receptors on Ca2+ levels in isolated nerve terminals (synaptosomes) from rat striatum. R-(+)-SKF81297, a selective D1-like receptor agonist, and (-)-quinpirole, a selective D2-like receptor agonist, induced increases in Ca2+ levels in different subsets of individual striatal synaptosomes. The SKF81297- and quinpirole-induced effects were blocked by R-(+)-SCH23390, a D1-like receptor antagonist, and (-)-sulpiride, a D2-like receptor antagonist, respectively. SKF81297- or quinpirole-induced Ca2+ increases were inhibited following blockade of voltage-gated calcium channels or sodium channels. In a larger subset of synaptosomes, quinpirole decreased baseline Ca2+. Quinpirole also inhibited veratridine-induced increases in intrasynaptosomal Ca2+ level. Immunostaining confirmed the presynaptic expression of D1, D5, D2 and D3 receptors, but not D4 receptors. The array of neurotransmitter phenotypes of the striatal nerve endings expressing D1, D5, D2 or D3 varied for each receptor subtype. These results suggest that presynaptic D1-like and D2-like receptors induce increases in Ca2+ levels in different subsets of nerve terminals via Na+ channel-mediated membrane depolarization, which, in turn, induces the opening of voltage-gated calcium channels. D2-like receptors also reduce nerve terminal Ca2+ in a different but larger subset of synaptosomes, consistent with the predominant presynaptic action of dopamine in the striatum being inhibitory.  相似文献   

12.
Abstract: The role of protein kinase C (PKC) in modulating the release of the octapeptide cholecystokinin (CCK-8) was investigated in rat hippocampal nerve terminals (synaptosomes). The PKC-activating phorbol ester 4β-phorbol 12,13-dibutyrate (β-PDBu) dose dependently (5–5,000 n M ) increased CCK-8 release in a strictly Ca2+-dependent way. This effect was observed only when synaptosomes were stimulated with the K+A channel blocker 4-aminopyridine (4-AP; 1 m M ) but not with KCI (10–30 m M ). The PDBu-induced exocytosis of CCK-8 was completely blocked by the two selective PKC inhibitors chelerythrine and calphostin-C and was not mimicked by α-PDBu, an inactive phorbol ester. In addition, an analogue of the endogenous PKC activator diacylglycerol, oleoylacetylglycerol, dose dependently increased CCK-8 exocytosis. β-PDBu (50–100 n M ) also stimulated the 4-AP-evoked Ca2+-dependent release of the classic transmitter GABA, which co-localizes with CCK-8 in hippocampal interneurons. As a possible physiological trigger for PKC activation, the role of the metabotropic glutamate receptor was investigated. However, the broad receptor agonist (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylic acid did not stimulate, but instead inhibited, both the CCK-8 and the GABA exocytosis. In conclusion, presynaptic PKC may stimulate exocytosis of distinct types of colocalizing neurotransmitters via modulation of presynaptic K+ channels in rat hippocampus.  相似文献   

13.
Tryptophan uptake, hydroxylation, and decarboxylation in isolated synaptosomes were studied to assess how their properties may determine the rate of serotonin synthesis in the presynaptic nerve terminals of the brain. Simultaneous measurements of the rates of uptake, hydroxylation, and decarboxylation in the presence and absence of various inhibitors showed that tryptophan hydroxylase is rate-limiting for serotonin synthesis in this model system. There was significant direct decarboxylation of tryptophan to tryptamine. Measurement of tryptophan hydroxylase flux with varying internal concentrations of tryptophan allowed the determination of the Km of tryptophan hydroxylase in synaptosomes for tryptophan of 120 +/- 15 microM. Depolarisation of synaptosomes with veratridine caused both a reduction in the internal tryptophan concentration and an apparent activation of tryptophan hydroxylase. This activation did not occur in the absence of Ca2+ or in the presence of trifluoperazine. Synaptosomal serotonin synthesis and brain stem-soluble tryptophan hydroxylase were inhibited by low concentrations of noradrenaline or dopamine. Dibutyryl cyclic AMP, glucagon, insulin, and vasopressin were observed to have no effect on tryptophan uptake or hydroxylation in synaptosomes.  相似文献   

14.
Abstract: Ischemic stroke was induced in the Mongolian gerbil by left common carotid ligation. No change in uptake of [3H]dopamine, [3H]γ-aminobutyric acid ([3H]GABA), or [14C]glutamate in synaptosomes obtained from the ischemic hemisphere was observed for up to 8 h. At 16 h after ligation, marked decrements in uptake were observed in animals showing hemiparesis: Uptake values expressed as a percent of the corresponding control hemisphere were 15.2% for dopamine, 28.0% for GABA, and 47.5% for glutamate. The differential sensitivity of dopamine terminals compared with glutamate terminals was highly significant. Separate experiments performed with synaptosomes isolated from the corpus striatum showed that the greater sensitivity to damage was intrinsic to the dopamine nerve terminal and not the result of regional variations in ischemic damage in brain. No bilateral effect of ischemia on dopamine uptake was evident. In animals exhibiting milder behavioral deficits (circling), a smaller and comparable decrement in uptake of dopamine, GABA, and glutamate was evident at 16 h, whereas animals not affected behaviorally showed no decrement at 16 h. Following uptake, the subsequent fractional release of neurotransmitter stimulated by 60 mM-potassium ions was not affected at any time point studied. Therefore, the loss in uptake at 16 h probably represents overt destruction of nerve terminals. Experiments with urethane used in place of pentobarbital for anesthesia during carotid occlusion showed that "protection" by pentobarbital was not a factor in the delayed response to ischemia. These results show that damage or destruction of nerve terminals is a delayed event following ischemia and that dopamine terminals are intrinsically more sensitive than glutamate terminals.  相似文献   

15.
This study was aimed at examining the effect of tamoxifen, a selective estrogen receptor modulator, on the release of endogenous glutamate in rat cerebral cortex nerve terminals (synaptosomes) and exploring the possible mechanism. Tamoxifen inhibited the release of glutamate that was evoked by the K(+) channel blocker 4-aminopyridine (4-AP), and this phenomenon was concentration-dependent and insensitive to the estrogen receptor antagonist. The effect of tamoxifen on the evoked glutamate release was prevented by the chelating extracellular Ca(2+) ions, and by the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor dl-threo-beta-benzyloxyaspartate did not have any effect on the action of tamoxifen. Tamoxifen did not alter the resting synaptosomal membrane potential or 4-AP-mediated depolarization whereas it decreased the 4-AP-induced increase in cytosolic [Ca(2+)]. Furthermore, the inhibitory effect of tamoxifen on the evoked glutamate release was abolished by the Ca(v)2.2 (N-type) and Ca(v)2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but not by the ryanodine receptor blocker dantrolene, or the mitochondrial Na(+)/Ca(2+) exchanger blocker CGP37157. In addition, the protein kinase C (PKC) inhibitors GF109203X or Ro318220 prevented tamoxifen from inhibiting glutamate release. Western blotting showed that tamoxifen significantly decreased the 4-AP-induced phosphorylation of PKC and PKCα. Together, these results suggest that tamoxifen inhibits glutamate release from rat cortical synaptosomes, through the suppression of presynaptic voltage-dependent Ca(2+) entry and PKC activity.  相似文献   

16.
1. Sodium uptake associated with the activation of voltage-sensitive sodium channels by alkaloid activators, batrachotoxin, veratridine, and aconitine in presynaptic nerve terminals isolated from the central nervous system of cockroach (Periplaneta americana) was investigated. 2. Batrachotoxin (K0.5, 0.2 microM) was full agonist as for most effective activator of Na+ uptake; veratridine (K0.5, 2.5 microM) and aconitine (K0.5, 7.6 microM) produced a maximal stimulation of 22Na+ uptake that were 71% and 43% respectively of that produced by batrachotoxin. 3. Veratridine-dependent 22Na+ uptake was completely inhibited by tetrodotoxin (I0.5, 11 nM), a specific inhibitor of the nerve membrane sodium channels. 4. The present study describes appropriate conditions for measuring neurotoxins--stimulated sodium transport in insect central nervous system synaptosomes. The data show that voltage-sensitive sodium channels as defined by specific activation by the alkaloid neurotoxins are qualitatively distinct in insect synaptosomes than those previously described for vertebrate brain synaptosomes, cultured neuronal cell, nerve membrane vesicles and neuroblastoma cells.  相似文献   

17.
The effect of aspirin on glutamate release from isolated nerve terminals (synaptosomes) from rat hippocampus was examined. The Ca(2+)-dependent release of glutamate evoked by 4-aminopyridine (4AP) was facilitated by aspirin in a concentration-dependent manner, but the 4AP-evoked Ca(2+)-independent release was not modified. Also, aspirin-mediated facilitation of glutamate release was completely inhibited by bafilomycin A1, which depletes vesicle content by inhibiting the synaptic vesicle H(+)-ATPase that drives glutamate uptake, not by l-trans-pyrrolidine-2,4-dicarboxylic acid (l-trans-PDC), a excitatory amino acid (EAA) transporter inhibitor, suggesting that the facilitation of glutamate release produced by aspirin originates from synaptic vesicle exocytosis rather than reversal of the plasma membrane glutamate transporter. In addition, aspirin did not alter either 4AP-evoked depolarization of the synaptosomal plasma membrane potential or Ca(2+) ionophore ionomycin-induced glutamate release, but significantly increased in 4AP-evoked Ca(2+) influx. A possible effect of aspirin on synaptosomal Ca(2+) channels was confirmed in experiments where synaptosomes pretreated with a combination of the N- and P/Q-type Ca(2+) channel blockers, which abolished the aspirin-mediated facilitation of glutamate release. The facilitatory action by aspirin observed in glutamate release was mimicked and occluded by arachidonic acid (AA) and eicosatetraynoic acid (ETYA), an analogue of AA that mimics the effect of AA but cannot be metabolized. Furthermore, this aspirin-mediated facilitation of glutamate release may depend on activation of protein kinase C (PKC), because PKC activator and PKC inhibitor, respectively, superseding or suppressing the facilitatory effect of aspirin. Together, these results suggest that aspirin exerts their presynaptic facilitatory effect, likely through AA directly to induce the activation of PKC, which subsequently enhances the Ca(2+) influx through voltage-dependent N- and P/Q-type Ca(2+) channels to cause an increase in evoked glutamate release from rat hippocampal nerve terminals.  相似文献   

18.
Although glycine receptors are found in most areas of the brain, including the hippocampus, their functional significance remains largely unknown. In the present study, we have investigated the role of presynaptic glycine receptors on excitatory nerve terminals in spontaneous glutamatergic transmission. Spontaneous EPSCs (sEPSCs) were recorded in mechanically dissociated rat dentate hilar neurons attached with native presynaptic nerve terminals using a conventional whole-cell patch recording technique under voltage-clamp conditions. Exogenously applied glycine or taurine significantly increased the frequency of sEPSCs in a concentration-dependent manner. This facilitatory effect of glycine was blocked by 1 μM strychnine, a specific glycine receptor antagonist, but was not affected by 30 μM picrotoxin. In addition, Zn2+ (10 μM) potentiated the glycine action on sEPSC frequency. Pharmacological data suggested that the activation of presynaptic glycine receptors directly depolarizes glutamatergic terminals resulting in the facilitation of spontaneous glutamate release. Bumetanide (10 μM), a specific Na-K-2C co-transporter blocker, gradually attenuated the glycine-induced sEPSC facilitation, suggesting that the depolarizing action of presynaptic glycine receptors was due to a higher intraterminal Cl concentration. The present results suggest that presynaptic glycine receptors on excitatory nerve terminals might play an important role in the excitability of the dentate gyrus-hilus-CA3 network in physiological and/or pathological conditions.  相似文献   

19.
Abstract: Activation of protein kinase C (PKC) and phosphorylation of its presynaptic substrate, the 43-kDa growth-associated protein GAP-43, may contribute to the maintenance of hippocampal long-term potentiation (LTP) by enhancing the probability of neurotransmitter release and/or modifying synaptic morphology. Induction of LTP in rat hippocampal slices by high-frequency stimulation of Schaffer collateral-CA1 synapses significantly increased the PKC-dependent phosphorylation of GAP-43, as assessed by quantitative immunoblotting with a monoclonal antibody that recognizes an epitope that is specifically phosphorylated by PKC. The stimulatory effect of high-frequency stimulation on levels of immunoreactive phosphorylated GAP-43 was not observed when 4-amino-5-phosphonovalerate (50 µM), an N-methyl-d -aspartate (NMDA) receptor antagonist, was bath-applied during the high-frequency stimulus. This observation supports the hypothesis that a retrograde messenger is produced postsynaptically following NMDA receptor activation and diffuses to the presynaptic terminal to activate PKC. Two retrograde messenger candidates—arachidonic acid and nitric oxide (sodium nitroprusside was used to generate nitric oxide)—were examined for their effects in hippocampal slices on PKC redistribution from cytosol to membrane as an indirect measure of enzyme activation and PKC-specific GAP-43 phosphorylation. Bath application of arachidonic acid, but not sodium nitroprusside, at concentrations that produce synaptic potentiation (100 µM and 1 mM, respectively) significantly increased translocation of PKC immunoreactivity from cytosol to membrane as well as levels of immunoreactive, phosphorylated GAP-43. The stimulatory effect of arachidonic acid on GAP-43 phosphorylation was also observed in hippocampal synaptosomes. These results indicate that arachidonic acid may contribute to LTP maintenance by activation of presynaptic PKC and phosphorylation of GAP-43 substrate. The data also suggest that nitric oxide does not activate this signal transduction system and, by inference, activates a distinct biochemical pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号