首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of platelet-derived growth factor (PDGF) on cellular Ca2+ was examined in BALB/c-3T3 cells. PDGF induced:
1. 1. A decrease in cell 45Ca2+ content.
2. 2. An apparent increased rate of efflux of preloaded 45Ca2+.
3. 3. A decrease in residual intracellular 45Ca2+ remaining after rapid efflux.
4. 4. When added after the rapid phase of efflux of 45Ca2+ had occurred, an immediate decrease in post-efflux residual intracellular 45Ca2+.
All of the observed changes in 45Ca2+ induced by PDGF are consistent with a rapid release of Ca2+ from an intracellular Ca2+ pool that has the slowest efflux and is relatively inaccessible to extracellular EDTA. When incubated with chlortetracycline (CTC), a fluorescent Ca2+ probe, 3T3 cell mitochondria became intensely fluorescent. Addition of PDGF resulted in a rapid decrease in CTC fluorescence intensity in both adherent and suspended 3T3 cells. The effects of PDGF on 3T3 cell Ca2+ stores and CTC fluorescence intensity were identical with the effects of the Ca2+ ionophore A23187 and of the proton ionophore carbonyl cyanide m-chlorophenyl hydrazone. Serum, which contains PDGF, also altered intracellular Ca2+ stores, but platelet-poor plasma, which does not contain PDGF, had no effect. EGF, insulin, and tetradecanoyl phorbol acetate (TPA), other factors which stimulate 3T3 cell growth, did not alter 3T3 cell Ca2+ stores. Release of Ca2+ from intracellular sequestration sites may be a mechanism by which PDGF Stimulates Cell growth.  相似文献   

2.
Highly purified platelet-derived growth factor (PDGF) or recombinant PDGF stimulate DNA synthesis in quiescent Swiss 3T3 cells. The dose-response curves for the natural and recombinant factors were similar, with half-maximal responses at 2-3 ng/ml and maximal responses at approx. 10 ng/ml. Over this dose range, both natural and recombinant PDGF stimulated a pronounced accumulation of [3H]inositol phosphates in cells labelled for 72 h with [3H]inositol. In addition, mitogenic concentrations of PDGF stimulated the release of 45Ca2+ from cells prelabelled with the radioisotope. However, in comparison with the response to the peptide mitogens bombesin and vasopressin, a pronounced lag was evident in both the generation of inositol phosphates and the stimulation of 45Ca2+ efflux in response to PDGF. Furthermore, although the bombesin-stimulated efflux of 45Ca2+ was independent of extracellular Ca2+, the PDGF-stimulated efflux was markedly inhibited by chelation of external Ca2+ by using EGTA. Neither the stimulation of formation of inositol phosphates nor the stimulation of 45Ca2+ efflux in response to PDGF were affected by tumour-promoting phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (TPA). In contrast, TPA inhibited phosphoinositide hydrolysis and 45Ca2+ efflux stimulated by either bombesin or vasopressin. Furthermore, whereas formation of inositol phosphates in response to both vasopressin and bombesin was increased in cells in which protein kinase C had been down-modulated by prolonged exposure to phorbol esters, the response to PDGF was decreased in these cells. These results suggest that, in Swiss 3T3 cells, PDGF receptors are coupled to phosphoinositidase activation by a mechanism that does not exhibit protein kinase C-mediated negative-feedback control and which appears to be fundamentally different from the coupling mechanism utilized by the receptors for bombesin and vasopressin.  相似文献   

3.
We determined the temporal relationship between the formation of inositol phosphates and increase in cytosolic [Ca2+] elicited by bombesin, vasopressin and platelet-derived growth factor (PDGF) in quiescent Swiss 3T3 cells. These responses were measured under identical conditions. Bombesin caused a rapid increase in inositol 1,4,5-trisphosphate which coincided with the increase in cytosolic [Ca2+]. This was followed by a slower but marked increase in inositol 1,3,4-trisphosphate and inositol-bisphosphate. Vasopressin elicited a similar sequence of events. In sharp contrast, highly purified porcine PDGF induced increases in cytosolic [Ca2+] and inositol 1,4,5-trisphosphate that were temporally uncoupled: detectable inositol polyphosphate formation occurred after Ca2+ mobilization from intracellular stores. The same temporal dissociation was observed when a recombinant v-sis product was used instead of porcine PDGF. However, PDGF was as effective as bombesin in stimulating the formation of inositol phosphates after 5-10 min of incubation. The data suggest that PDGF increases cytosolic [Ca2+] via a different signal transduction pathway from that utilized by bombesin and vasopressin. These findings have important implications for understanding the signal transduction pathway activated by PDGF.  相似文献   

4.
Mitogenic stimulation of density-arrested C3H 10T1/2 mouse fibroblasts by serum or purified platelet-derived growth factor (PDGF) was potently inhibited by retinyl acetate (RAc; IC50 = 0.1 microgram/ml, 0.3 x 10(-6) M) when administered during the first 2 hours of mitogen exposure. This inhibitory effect of RAc coincided with a period early in the cell growth-division cycle when density-arrested C3H 10T1/2 cells stimulated by PDGF were found to require physiological levels of extracellular Ca2+ for the transition from G0 to G1 of the cell cycle. To determine if the inhibitory effect of RAc was mediated through alterations in the Ca2+ signaling pathway induced by mitogens, we examined Fura-2-loaded fibroblasts for changes in the Ca2+ response elicited by PDGF. Addition of PDGF (5 ng/ml) induced a transient increase in the [Ca2+]i that was not significantly effected by the extracellular Ca2+ concentration. Treatment of cells with RAc caused a concentration- and time-dependent inhibition of this PDGF-stimulated Ca2+ flux (IC50 = 0.45 microgram/ml or 1.5 x 10(-6) M; t1/2 = 15 min), whereas release of intracellularly stored Ca2+ by thrombin was unaffected by RAc (1.2 micrograms/ml, 4 x 10(-6) M). Treatment with RAc did not significantly affect PDGF binding to cell surface receptors or the generation of inositol phosphates. These results suggest that the mechanism by which RAc inhibits PDGF- or serum-induced mitogenesis is through modulation of the Ca2+ signal stimulated by PDGF, and thereby depriving the cell of a rise in intracellular Ca2+ necessary for progression through the cell cycle.  相似文献   

5.
The regulation of phosphoinositide phosphorylation was studied in Swiss 3T3 cells that were stimulated by platelet-derived growth factor (PDGF). Studies with intact cells showed that the mitogen increased the incorporation of 32P into phosphatidylinositol (PtdIns), phosphatidylinositol 4-phosphate (PtdIns-P), and phosphatidylinositol 4,5-bisphosphate (PtdIns-P2) during the cell cycle, with distinct peaks of incorporation for all three phosphoinositides after 1 h, and for PtdIns and PtdIns-P2 after 20 h. Direct measurements of the activities of PtdIns kinase and PtdIns-P kinase in freeze-thawed cells revealed that the activity of PtdIns kinase was rate-limiting for the synthesis of PtdIns-P2. Maximal activities of PtdIns kinase and PtdIns-P kinase, with exogenous substrates, were unchanged during the 1st h of PDGF treatment, but doubled during the next 24 h. The increase in PtdIns kinase activity began within 2-4 h, exceeded the increase in cell protein, and was abolished by cycloheximide, which suggests that the enzyme was induced specifically in response to PDGF. The increase in activity of PtdIns-P kinase paralleled the increase in cell protein. Dose-response curves for PDGF showed that the activities of PtdIns kinase and PtdIns-P kinase at 24 h increased in proportion to the extent of mitogenic stimulation of the cells. Our results support the conclusion that the activities of PtdIns kinase and PtdIns-P kinase increase in response to PDGF, but only after several hours of cell cycle traverse.  相似文献   

6.
Addition of porcine platelet-derived growth factor (PDGF) to quiescent cultures of Swiss 3T3 cells caused a marked, dose-dependent stimulation of Na+ influx and Na-K pump-mediated 86Rb+ uptake. Porcine PDGF (a single component in SDS polyacrylamide gels) stimulated ion fluxes to the same maximal extent as partially purified preparations, and exhibited half-maximal effect at 6 ng/ml (2 X 10(-10) M). Maximal effect was achieved at 30 ng/ml (10(-9) M). In the presence of insulin, PDGF elicited mitogenesis at comparable concentrations. PDGF stimulated ion uptake in a time-dependent fashion; maximal effect was obtained after 5 min of exposure to the growth factor. PDGF stimulates Na+ influx via an amiloride-sensitive pathway, suggesting that PDGF enhances the activity of a Na+/H+ antiport system. In accordance with this possibility, the mitogen caused an increase of intracellular pH by 0.15 pH units, as judged by the steady-state distribution of labelled 5,5-dimethyloxazolidine-2,4-dione (DMO). Porcine PDGF stimulated E-type prostaglandin synthesis and cAMP accumulation but these events could be dissociated from the stimulation of the ionic fluxes, which was detected within minutes and was not blocked by indomethacin. It is suggested that PDGF elicits multiple signals to stimulate cell proliferation in 3T3 cells.  相似文献   

7.
To elucidate the transmembrane signalling processes initiated by fibroblast growth factor (FGF), we have studied the effect of recombinant basic FGF (bFGF) on various early events associated with mitogenesis in Swiss 3T3 fibroblasts. bFGF, at mitogenic concentrations, neither induced Ca2+ mobilization from intracellular stores nor increased the accumulation of inositol phosphates. In contrast, bFGF stimulated the phosphorylation of the Mr 80,000 (80K) cellular protein which is a major substrate of protein kinase C. This effect was potentiated by the diacylglycerol kinase inhibitor R59022. Two-dimensional polyacrylamide gel electrophoresis and phosphopeptide mapping showed that the 80K phosphoproteins generated in response to bFGF, bombesin, and phorbol 12,13-dibutyrate were indistinguishable. Down-regulation of protein kinase C prevented bFGF stimulation of 80K phosphorylation. Other protein kinase C-dependent early events such as transmodulation of the epidermal growth factor receptor, cytoplasmic alkalinization, inhibition of vasopressin induced increase in cytosolic [Ca2+], and enhancement of cAMP accumulation in response to forskolin were also induced by bFGF. Similar results were obtained when bFGF was added to quiescent cultures of tertiary mouse embryo fibroblasts. We conclude that bFGF stimulates protein kinase C through a signal transduction pathway distinct from inositol phospholipid turnover and Ca2+ mobilization.  相似文献   

8.
Stimulation of total inositol phosphate production, alteration of cytosolic free calcium [( Ca++]i), vinculin disruption from adhesion plaques, and DNA synthesis caused by PDGF were examined in normal and INF pretreated density arrested BALB/c-3T3 fibroblasts. In normal cells, PDGF caused an increase in total inositol phosphates, a rapid, transient increase in [Ca++]i, disappearance of vinculin from adhesion plaques, and stimulation of DNA synthesis. Pretreatment of cells with INF inhibited PDGF-stimulated increases in [Ca++]i, vinculin disruption from adhesion plaques, and DNA synthesis, but had no effect on PDGF-induced increase in total inositol phosphate levels. These findings suggest that INF prevents entry of quiescent BALB/c-3T3 cells into G1 by inhibiting PDGF-induced release of Ca++ from intracellular stores.  相似文献   

9.
10.
A digital imaging microscope and fluorescent Ca(2+)-sensitive probe (Fura 2) were used to study the spatial location and time course of increases in free intracellular calcium (Cai) induced by platelet-derived growth factor (PDGF). Microinjection of Fura 2 acid avoided problems of incomplete deesterification of Fura 2-acetoxymethyl ester (Fura 2/AM) and dye localization in cellular organelles. PDGF stimulated a rapid increase in Cai (up to 8-fold increase) in both the nucleus and the cytoplasm in approximately half of the quiescent BALB/c 3T3 cells. Cai changes were both spatially and temporally heterogeneous, the latter including both transient (1-2 min) and prolonged increases (greater than 5 min) in the same cell. PDGF stimulated mitogenesis and Cai increases in approximately the same percentage of cells. Moreover, large intracellular concentrations of a Ca2+ buffer (Quin 2) inhibited both Cai increases and mitogenesis stimulated by PDGF. Thus, Ca2+ increases in the nuclear and/or cytosolic compartments appear to be required for the stimulation of mitogenesis by polypeptide growth factors such as PDGF.  相似文献   

11.
The effects of different substances on [Ca2+]i and membrane potential (measured by fura-2 and bis-oxonol fluorescence techniques, respectively) were studied in wild-type and NIH-3T3 fibroblasts transfected with the cDNA encoding the human epidermal growth factor receptor. Application of partially purified PDGF or FGF induced, after a lag (0.5-1 min), a [Ca2+]i increase composed by an initial, slow peak, sustained primarily by intracellular Ca2+ release followed by a plateau, sustained by Ca2+ influx from the medium. The [Ca2+]i changes were paralleled by plasma membrane hyperpolarization mainly due to the activation of a K+ efflux, since raising the extracellular K+ concentration progressively reversed the effect of both growth factors. These responses were much slower than those induced by other agents (bradykinin, extracellular ATP, and EGF). The close resemblance between PDGF- and FGF-induced early signals (time-course and insensitivity to phorbol esters) suggests similar transmembrane signalling mechanisms at the cognate receptor.  相似文献   

12.
Effects of platelet-derived growth factor on bone formation in vitro   总被引:5,自引:0,他引:5  
Platelet-derived growth factor (PDGF) is a polypeptide found in a variety of tissues, including bone, where it could act as an autologous regulator of skeletal remodeling. Therefore, a recombinant B chain homodimer of human PDGF was studied for its effects on bone formation in cultured rat calvariae. PDGF at 10-100 ng/ml stimulated [3H]thymidine incorporation into DNA by up to sixfold and increased the DNA content and the number of colcemid-induced metaphase arrested cells. This effect was observed in the fibroblast and precursor cell-rich periosteum. As a result of its mitogenic actions, PDGF enhanced [3H]proline incorporation into collagen, an effect that was observed primarily in the osteoblast-rich central bone. The effect of PDGF was not specific for collagen since it also increased noncollagen protein synthesis. In addition, PDGF increased bone collagen degradation. PDGF and insulin-like growth factor (IGF) I had additive effects on calvarial DNA synthesis, but PDGF opposed the stimulatory effect of IGF I on collagen synthesis and IGF I prevented the PDGF effect on collagen degradation. In conclusion, PDGF stimulates calvarial DNA synthesis which causes an increased number of collagen-synthesizing cells, but PDGF also enhances bone collagen degradation.  相似文献   

13.
Platelet-derived growth factor (PDGF) and platelet-poor plasma, which lacks PDGF, both induce a rapid increase in the rate of total protein synthesis within quiescent, density-arrested Balb/c-3T3 cells. This stimulation of protein synthesis is associated with an increased aggregation of ribosomes into polyribosomes. Nuclear functions are not required for this response, as demonstrated by the observation that this stimulation of protein synthesis occurs in cells pretreated with actinomycin D and in enucleated cells (cytoplasts). The response to PDGF persists even after PDGF has been removed from the culture medium, but in contrast, when plasma is removed from the medium, polysomes disaggregate and protein synthesis declines. PDGF and plasma do not function synergistically to increase protein synthesis, whereas they do to induce optimum DNA synthesis. Thus stimulation of the translational apparatus may be necessary for the mitogenic response of Balb/c-3T3 cells to growth factors, but it is not by itself sufficient.  相似文献   

14.
We have investigated the regulation of p27kip1, a cyclin-dependent kinase inhibitor, in BALB/c 3T3 cells during growth factor-stimulated transition from quiescence (G0) to a proliferative (G1) state. The level of p27kip1 protein falls dramatically after mitogenic stimulation and is accompanied by a decrease in cyclin E associated p27kip1, as well as a transient increase in cyclin D1-associated p27kip1 that later declines concomitantly with the loss of total p27kip1. Analysis of metabolically labelled cells revealed that cyclin D2, cyclin D3, and cdk4 were also partnered with p27kip1 in quiescent BALB/c 3T3 cells and that this association decreased after platelet-derived growth factor (PDGF) treatment. Furthermore, the decline in p27kip1 and reduced association with cyclin D3, initiated by the addition of PDGF but not plasma-derived factors, suggested that these changes are involved in competence, the first step in the exit from G0. Synthesis of p27kip1 as determined by incorporation of [35S]methionine was repressed upon mitogenic stimulation, and PDGF was sufficient to elicit this repression within 2 to 3 h. Pulse-chase experiments demonstrated the reduced rate of synthesis was not the result of an increased rate of degradation. Full repression of p27kip1 synthesis required the continued presence of PDGF and failed to occur in the presence of the RNA polymerase inhibitor 5,6-dichlorobenzimidazole riboside. These characteristics demonstrate that repression was a late effect of PDGF and was consistent with our finding that conditional expression of activated H-ras did not affect synthesis of p27kip1. Northern (RNA) analysis of p27kip1 mRNA revealed that the repression was not accompanied by a corresponding decrease in p27kip1 mRNA, suggesting that the PDGF-regulated decrease in p27kip1 expression occurred through a translational mechanism.  相似文献   

15.
Quiescent Swiss 3T3 cells stimulated to divide by human platelet-derived growth factor (PDGF) were used to investigate cell cycle-dependent changes in arachidonic acid, stearic acid, and glycerol metabolism. PDGF at 12 ng/ml stimulated incorporation of labeled arachidonic and stearic acid into phosphatidic acid and phosphatidylinositol within 60 min. With similar kinetics PDGF stimulated glycerol incorporation into phosphatidic acid and phosphatidylinositol indicating early growth factor-dependent stimulation of de novo phosphatidylinositol synthesis. This early effect of PDGF was specific for the phosphatidylinositol synthesis pathway since no comparable changes were noted in other glycerolipids. After a lag of 4-6 h, PDGF strongly stimulated arachidonic acid incorporation into triacylglycerol: at 6 h, arachidonate radioactivity in triacylglycerol exceeded that in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. This effect of PDGF was not associated with de novo triacylglycerol synthesis since no increase in the rate of glycerol incorporation into this lipid was noted. Finally, PDGF stimulated incorporation of glycerol into all major phospholipids and triacylglycerol during S-phase. These results disclose three novel effects of PDGF on glycerolipid metabolism in Swiss 3T3 cells: 1) early selective activation of the phosphatidylinositol synthesis pathway; 2) delayed strong stimulation of arachidonic acid incorporation into triacylglycerol; and 3) late induction of de novo phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol synthesis. These PDGF effects are likely to play important roles in phosphatidylinositol metabolism, membrane biosynthesis, and fatty acid turnover in rapidly growing cells.  相似文献   

16.
The effect of mitogens on phospholipase D activity was investigated in NIH-3T3 fibroblasts by measuring the accumulation of phosphatidylpropanol, produced by phospholipase D phosphatidyl transferase activity when 1-propanol acts as the phosphatidyl group acceptor. Platelet-derived growth factor (PDGF) and 12-O-tetradecanoylphorbol 13-acetate (TPA) stimulated phosphatidylpropanol production by the cells. The dose-response relationships for activation of phospholipase D and stimulation of thymidine incorporation by PDGF and TPA were comparable. The possibility that activation of phospholipase D is utilized by mitogens as a trans-membrane pathway for signalling cell growth is discussed.  相似文献   

17.
Ca2+-induced translocation of hexose carriers from microsomal membrane to plasma membrane was demonstrated in saponin-permeabilized Swiss 3T3 cells by a specific D-glucose-inhibitable cytochalasin B-binding assay. The number of hexose carriers in the plasma membrane and the hexose transport activity in intact cells were also compared. The incubation of permeabilized cells with 10 microM Ca2+ at 37 degrees C rapidly increased the number of D-glucose-inhibitable cytochalasin B-binding sites in the plasma membrane from 13 to 40 pmol/mg protein and concomitantly decreased that in the microsomal membrane from 66 to 36 pmol/mg protein, each with a half-time of approx. 2 min. Furthermore, when Ca2+-stimulated cells were exposed to 50 microM EGTA, the effect of Ca2+ on the translocation of D-glucose-inhibitable cytochalasin B-binding sites was reversed with a half-time of approx. 5 min. The concentration of Ca2+ required for the half-maximal effect was approx 500 nM. The magnitude of the stimulatory effect of D-glucose-inhibitable cytochalasin B-binding sites in the plasma membrane closely correlated with the magnitude of stimulatory action of Ca2+ on 3-O-methylglucose transport in the intact cells. These results suggest that Ca2+ regulates the activity of hexose transport across the plasma membrane through a rapid and reversible translocation of hexose carrier between microsomal and plasma membranes of mouse fibroblast Swiss 3T3 cells.  相似文献   

18.
Platelet-derived growth factor (PDGF) occurs as homodimers or heterodimers of related polypeptide chains PDGF-BB, -AA, and -AB. There are two receptors that bind PDGF, termed alpha and beta. The beta receptor recognizes PDGF B chain and is dimerized in response to PDGF BB. The alpha receptor recognizes PDGF B as well as A chains and can be dimerized by the three dimeric forms of PDGF AA, AB, and BB. To characterize PDGF receptor signaling mechanisms and biologic activities in human mesangial cells (MC), we explored the effects of the three PDGF isoforms on DNA synthesis, phospholipase C activation, and PDGF protooncogene induction. PDGF-BB homodimer and AB heterodimer induced a marked increase in DNA synthesis, activation of phsopholipase C, and autoinduction of PDGF A and B chain mRNAs, whereas PDGF-AA homodimer was without effect. The lack of response to PDGF AA could be accounted for by down regulation of the PDGF-alpha receptor since preincubation of MC with suramin restored PDGF AA-induced DNA synthesis. Ligand binding studies demonstrate specific binding of labeled PDGF BB and AB and to a lower extent PDGF AA isoforms to mesangial cells. These results are consistent with predominant expression of PDGF beta receptor in MC, which is linked to phospholipase-C activation. The potent biologic effects of PDGF-AB heterodimer in cells that express very few alpha receptors and do not respond to PDGF AA are somewhat inconsistent with the currently accepted model of PDGF receptor interaction and suggest the presence of additional mechanisms for PDGF isoform binding and activation. © 1994 Wiley-Liss, Inc.  相似文献   

19.
We earlier developed a novel method to detect translocation of the glucose transporter (GLUT) directly and simply using c-MYC epitope-tagged GLUT (GLUTMYC). To define the effect of platelet-derived growth factor (PDGF) on glucose transport in 3T3-L1 adipocytes, we investigated the PDGF- and insulin-induced glucose uptake, translocation of glucose transporters, and phosphatidylinositol (PI) 3-kinase activity in 3T3-L1, 3T3-L1GLUT4MYC, and 3T3-L1GLUT1MYC adipocytes. Insulin and PDGF stimulated glucose uptake by 9-10- and 5.5-6.5-fold, respectively, in both 3T3-L1 and 3T3-L1GLUT4MYC adipocytes. Exogenous GLUT4MYC expression led to enhanced PDGF-induced glucose transport. In 3T3-L1GLUT4MYC adipocytes, insulin and PDGF induced an 8- and 5-fold increase in GLUT4MYC translocation, respectively, determined in a cell-surface anti-c-MYC antibody binding assay. This PDGF-induced GLUT4MYC translocation was further demonstrated with fluorescent detection. In contrast, PDGF stimulated a 2-fold increase of GLUT1MYC translocation and 2.5-fold increase of glucose uptake in 3T3-L1GLUT1MYC adipocytes. The PDGF-induced GLUT4MYC translocation, glucose uptake, and PI 3-kinase activity were maximal (100%) at 5-10 min and thereafter rapidly declined to 40, 30, and 12%, respectively, within 60 min, a time when effects of insulin were maximal. Wortmannin (0.1 microM) abolished PDGF-induced GLUT4MYC translocation and glucose uptake in 3T3-L1GLUT4MYC adipocytes. These results suggest that PDGF can transiently trigger the translocation of GLUT4 and stimulate glucose uptake by translocation of both GLUT4 and GLUT1 in a PI 3-kinase-dependent signaling pathway in 3T3-L1 adipocytes.  相似文献   

20.
Previous data show a relation between GSH content and proliferation of normal and tumour cells. We recently demonstrated a specific involvement of GSH in the autophosphorylation activity of the platelet-derived growth factor (PDGF) receptor in NIH3T3 fibroblasts. In this study we demonstrate that the stimulation by PDGF of serum-starved NIH3T3 cells increases cellular GSH content, while no change in oxidized GSH content was measured. Experiments performed with actinomycin, cycloheximide and buthionine sulfoximide, a specific inhibitor of the rate-limiting enzyme of the de novo synthesis of GSH gamma-glutamylcysteine synthetase (gamma-GCS), confirm PDGF induction of GSH synthesis. These results provide the first demonstration that PDGF mediated transduction signals seem strictly related to mechanisms involved in the increase of gamma-GCS activity associated with increased gamma-GCS heavy subunit mRNA levels. In fact, serum and epidermal growth factor (EGF) stimulation of quiescent NIH3T3 and NIH3T3, which overexpress EGF receptor, does not affect GSH content or its synthesis. These data may be related to a possible GSH role in the redox regulation of cell proliferation mediated by PDGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号