首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The equilibria of the binding of methyl and ethyl isonitrile to carp hemoglobin have been measured at three pH values in the presence and absence of inositol hexaphosphate. The binding of methyl isonitrile is characterized by a higher overall dissociation constant, C1/2, and a higher Hill coefficient, n, than that of the ethyl derivative. The former is consistent with the greater hydrophobicity of ethyl isonitrile, and the latter is probably due to a greater intrinsic difference or heterogeneity in the binding affinities of the alpha- and beta-chains for the larger ligand. Changes in log C1/2 which result from alterations in pH or addition of organic phosphate are the same for both ligands within experimental error. This result is not consistent with affinity changes being the result of steric interactions between the protein and the ligand. At pH 6 in the presence of inositol hexaphosphate, equilibrium parameters estimated from overall rates of ligand binding and dissociation are in good agreement with direct equilibrium measurements. This is consistent with the protein being in a low-affinity, T-like state even when saturated with ligand under these conditions, resulting in a loss of cooperativity in ligand binding. At high pH, ligand binding remains cooperative, as evidenced by n values greater than unity, a general lack of agreement between measured equilibrium parameters and those estimated from overall kinetic constants, and differences in the kinetics of ligand binding as observed by rapid-mixing and flash photolysis techniques. Thus, the deoxygenated state of carp hemoglobin at high pH does not appear to be a good model of a deoxygenated R quaternary structural state.  相似文献   

2.
M Wind  A Stern  S Simon  L Law 《Biochemistry》1976,15(23):5161-5167
The pH dependence of several functional properties of human fetal and adult hemoglobins have been studied to determine the relative stabilities of the high and low affinity (R and T) quaternary conformations of the two proteins under different conditions. Fetal aqumethemoglobin undergoes changes in sulfhydryl reactivity, absorption spectrum, and circular dichroism in the presence of insitol hexaphospahte which are consistent with a transition from the R to T quaternary state, but only at pH values below 6.8. In adult hemoglobin this transition can be induced pH values below 7.2. Even in the absence of phosphates, the ultraviolet (uv) circular dichroism spectrum of fetal aquomethemoglobin at low pH indicates the presence of some T conformation. The initial value for the second-order rate constant for combination of fetal deoxyhemoglobin with carbon monoxide is comparable to that for adult hemoglobin in the absence of organic phosphates and is not reduced by organic phosphates as much as that for the adult protein. The apparent first-order rate constant for dissociation of CO from fully liganded fetal hemoglobin, measured by replacement with NO, increases threefold in the absence of organic phosphates, and fourfold in the presence of organic phosphates, with decreasing pH; the midpoint of the pH dependent transition occurs around 6.8. A similar increase in the apparent first-order rate constant for O2 dissociation as measured by replacement with CO, can also be seen with decreasing pH. NO-hemoglobin F can be converted to the T state even when fully liganded simply by lowering the pH, as judged by uv circular dichroism, visible difference spectrum in the region of the alpha and beta bands, and a dramatic increase in the rate of NO dissociation, measured by replacement with CO in the presence of dithionite. These results are all consistent with a model for fetal hemoglobin in which the organic phosphate site may be functionally weakened by replacement of a residue involved in ionic interactions with the negatively charged phosphate groups, but in which the low affinity T conformation is intrinsically more stable than that of adllt hemoglobin. According to this model,the differences between fetal and adult hemoglobin can be accounted for primarily in terms of the relative stabilities of R and T conformations in each of the proteins with differences in the intrinsic properties of the individual conformations contributing effects of only secondary importance.  相似文献   

3.
L J Parkhurst  D J Goss 《Biochemistry》1984,23(10):2180-2186
Oxygen and CO ligand binding kinetics have been studied for the hybrid hemoglobin (Hb) alpha (human):beta (carp), hybrid II. Valency and half-saturated hybrids were used to aid in the assignment of the conformations of both chains. In hybrid II, an intermediate S state occurs, in which one chain has R- and the other T-state properties. In HbCO at pH 6 (plus 1 mM inositol hexaphosphate), the human alpha-chain is R state and the carp beta-chain is T state. We have no evidence at this pH that the carp beta-chain ever assumes the R conformation. At pH 6, the human alpha-chain shows human Hb R-state kinetics at low fractional photolysis and T-state rates for CO ligation by stopped flow. At pH 7, the human-chain R-state rate slows toward a carp hemoglobin rate. The carp beta-chains, on the other hand, react 50% more rapidly in the liganded conformation than in carp hemoglobin, and while the human alpha-chains are in the R state, the two beta-chains appear to function as a cooperative dimer. In this hemoglobin, the chains appear to be somewhat decoupled near pH 7, allowing a sequential conformational change from the R state in which the beta-chains first assume T-state properties, followed by the alpha-chains. The rate of the R-T conformational change for the carp beta-chains is at least 300 times greater than that for the human alpha-chains. At pH 9, the R----T conformational transition rate is at least 200 times slower than that for human hemoglobin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The functional properties of squirrel-fish hemoglobin have been measured by studying ligand binding equilibria and kinetics. The results show that squirrel-fish hemoglobin has a Root effect with a corresponding stabilization of the low affinity state. The properties of this state are pH dependent even in the absence of cooperativity. The effect of ATP shifts the overall ligant affinity towards the low affinity state and is characteristic of the allosteric effect caused by organic phosphates. Under pH and ATP conditions favoring the low affinity conformational state, a 10-fold difference in the binding kinetics of carbon monoxide to the alpha and beta subunits is observed.  相似文献   

5.
The four components of hemoglobin from the rainbow trout (Salmo gairdneri) have been isolated. The oxygen affinities of the first two components eluted from the DEAE-cellulose column have much smaller pH dependencies than the last two components. These components have very low O2 affinities at low pH. The effect of pH on the equilibrium and kinetics of ligand binding to the third fraction, the pH-dependent component present in greatest amounts, has been studied. Measurements of ligand binding equilibria demonstrate the presence of both an alkaline and an acid Bohr effect. In the region of the alkaline Bohr effect the value of n in the Hill equation is a function of ligand affinity. For CO binding n decreases as the pH is decreased until at pH 6, the minimum ligand affinity is reached. At this pH there is also a complete loss of cooperative ligand binding. Decreasing the pH further results in an increase of ligand affinity, but this acid Bohr effect is not associated with a reappearance of cooperativity. This suggests that Fraction 3 of S. gairdneri is frozen in the low affinity, deoxygenated conformation at low pH and that the quaternary structure does not change even when fully liganded. However, the properties of the low affinity conformation of this hemoglobin are pH-dependent.  相似文献   

6.
The intrinsic fluorescence of hemoglobins is known to respond to ligand-induced changes in the quaternary structure of the protein. Carp hemoglobin is an interesting model to study the quaternary transition since its R----T equilibrium is pH-dependent and at low pH, in the presence of organic phosphate, it remains in the T or 'deoxy' quaternary structure, even when saturated with ligand. In this study, using front-face fluorometry, we show that the intrinsic fluorescence intensity exhibited by carp carboxyhemoglobin increases as the pH is lowered below 6.5 in the presence of inositol hexaphosphate. At low pH, carp methemoglobin is less affected by the addition of inositol hexaphosphate than is the CO derivative, while little or no change is observed in the met-azide derivative. We conclude: (1) the exact nature of the R to T state transition induced by inositol hexaphosphate differs for carp carboxy-, met- and met-azide hemoglobin derivatives; (2) the chromophores responsible for the changes observed with absorption spectroscopy may not be the same as those chromophores responsible for the fluorescence differences; and (3) alpha 46-Trp is tentatively assigned as one source of fluorescence emission. Furthermore, fluorescence properties of carp hemoglobin are compared to those of human hemoglobin.  相似文献   

7.
It has been established that Molpadia hemoglobin tends to dissociate into subunits as oxygen is bound. The kinetics and equilibria of carbon monoxide and ehtylisocyanide binding reported here show a dependence on protein concentration that supports the conclusions that the aggregated hemoglobin has a lower ligand affinity than the dissociated subunits. This is true for the isolated D-chain as well as for the unfractionated hemolysate that contains four distinct polypeptide chains (A-D). This indicates that even homopolymers of Molpadia hemoglobin have lower ligand affinity than the dissociated subunits. At high protein concentration hemolysates of Molpadia hemoglobin show slight cooperativity. The time course of ligand binding to the deoxy D-chain also suggests cooperative interactions, The low affinity of the aggregated state may have a different molecular explanation than in human hemoglobin were tetramers of identical subunits (as in Hb H) show high oxygen affinity. The absence of tyrosine and histidine at the C-tremini of the Molpadia D-chains also suggests a different stabilization of the low affinity deoxy state. An additional functional difference between Molpadia hemoglobin and human hemoglobin is that organic phosphate do not alter the ligand affinity of the sea cucumber hemoglobin.  相似文献   

8.
We have determined the low temperature EPR spectra and room temperature ligand dissociation rate constants of human NO-hemoglobins F and A as a function of pH and inositol hexaphosphate levels in order to assess the contribution of a quaternary structural equilibrium in the two proteins to their spectral and functional properties. Our results are consistent with an increased stability of a ligated low affinity structure in the fetal protein; the functional properties of this structure appear to be essentially the same in the two hemoglobins, even though its stability relative to a high affinity conformation is different. The pH dependence of the NO dissociation constant in both adult and fetal hemoglobin can be assigned primarily to the pH-dependent equilibria of high and low affinity forms as monitored by EPR.  相似文献   

9.
To understand the interplay between tertiary and quaternary transitions associated with hemoglobin function and regulation, oxygen binding curves were obtained for hemoglobin A fixed in the T quaternary state by encapsulation in wet porous silica gels. At pH 7.0 and 15 degrees C, the oxygen pressure at half saturation (p50) was measured to be 12.4 +/- 0.2 and 139 +/- 4 torr for hemoglobin gels prepared in the absence and presence of the strong allosteric effectors inositol hexaphosphate and bezafibrate, respectively. Both values are in excellent agreement with those found for the binding of the first oxygen to hemoglobin in solution under similar experimental conditions. The corresponding Hill coefficients of hemoglobin gels were 0.94 +/- 0.02 and 0.93 +/- 0.03, indicating, in the frame of the Monod, Wyman, and Changeux model, that high and low oxygen-affinity tertiary T-state conformations have been isolated in a pure form. The values, slightly lower than unity, reflect the different oxygen affinity of alpha- and beta-hemes. Significantly, hemoglobin encapsulated in the presence of the weak effector phosphate led to gels that show intermediate oxygen affinity and Hill coefficients of 0.7 to 0.8. The heterogeneous oxygen binding results from the presence of a mixture of the high and low oxygen-affinity T states. The Bohr effect was measured for hemoglobin gels containing the pure conformations and found to be more pronounced for the high-affinity T state and almost absent for the low-affinity T state. These findings indicate that the functional properties of the T quaternary state result from the contribution of two distinct, interconverting conformations, characterized by a 10-fold difference in oxygen affinity and a different extent of tertiary Bohr effect. The very small degree of T-state cooperativity observed in solution and in the crystalline state might arise from a ligand-induced perturbation of the distribution between the high- and low-affinity T-state conformations.  相似文献   

10.
We have measured the forward and reverse rates of the allosteric transition of hemoglobin A with three CO molecules bound by using modulated excitation coupled with fluorescence quenching of the DPG analogue, PTS (8-hydroxy-1,3,6 pyrene trisulfonic acid). This dye is observed to bind to the T state with significantly larger affinity than to the R state, and thus provides an unequivocal marker for the molecule's conformational change. The allosteric rates obtained with the fluorescent dye (pH 7.0, bis-Tris buffer) are (3.4 +/- 1.0) x 10(3)s-1 for the R to T transition and (2.1 +/- 0.5) x 10(4)s-1 for the T to R transition. This gives an equilibrium constant L3 of 0.16 +/- 0.06. These results provide good agreement with modulated difference spectra calibrated from model compounds, arguing that there is little if any difference in the kinetics observed by the heme spectra and the kinetics of the full subunit motion. The equilibrium constant between structures (L3) is smaller in the absence of phosphates than observed in phosphate buffer (0.33). However, the rates of the allosteric transition increase in the absence of phosphates as compared with the corresponding rates in phosphate buffer of 1.0 x 10(3)s-1 and 3.0 x 10(3)s-1. The effects of inorganic phosphates on the equilibrium can be separated from the effects on kinetics. We find that phosphates also affect the dynamic behavior of hemoglobin, and the presence of 0.15 M phosphate can be viewed as raising the transition state energy between R and T conformations by approximately 0.5 kcal/mol exclusive of the T state stabilization. Dissociation constants for the dye were measured to be 104 +/- 25 microM for unligated T state and 930 +/- 300 microM for the fully ligated R state. The best fit equilibrium constant (125 +/- 40 microM) for three ligands bound does not differ significantly from that measured without ligands bound. Incidental to the measurement technique is the determination of the rates of binding and release of the dye. The association rate for binding to the T state is large, (at least 4 x 10(9) M-1 s-1) and may be diffusion limited, while the association and dissociation rates for R state binding, while not determined with precision, are clearly much smaller, of the scale of 10(5) M-1 s-1 for association.  相似文献   

11.
The ligand binding properties of the hemoglobins of several deep-sea, bottom-living fish have been examined. These include five species of rattails (Macrouridae) and Antimora rostrata, all of which possess swimbladders, and two unrelated species without swimbladders, Bathysaurus mollis and Alepocephalus sp. All of the hemolysates of these fish exhibited the Root effect with a minimum ligand affinity at about pH 6 in the presence of organic phosphate. Under these conditions the hemolysates from fish which possess swimbladders exhibit two roughly equal populations of heme groups with markedly different ligand affinities. For the deeper-dwelling species the affinities for carbon monoxide differ by some 500-fold, the low-affinity population having a p50(CO) of 100 mmHg at 15 degrees C. This very low affinity is associated with a second-order rate constant for CO combination of the order of 10(3) M-1 X s-1. Those species without swimbladders have hemoglobins which do not have such heterogeneous binding sites, suggesting a relationship between these very-low-affinity heme groups and the pumping of oxygen into a swimbladder at high hydrostatic pressures.  相似文献   

12.
Human deoxyhemoglobin has been titrated with nitric oxide at several pH values ranging from 6.0 to 9.0, in the presence and absence of the allosteric effector inositol hexaphosphate at 25 degrees C. Samples were frozen for EPR measurements or analyzed optically within 30 s after mixing to ensure a kinetic population of intermediates. Fractions of pentacoordinate alpha-NO heme groups were determined by fitting EPR and absorbance difference spectra in terms of linear combinations of standard signals. Equivalent results were obtained by these techniques. The fraction of alpha-NO heme exhibiting pentacoordinate character in Hb4NO increases from 0.07 to 0.73 in going from pH 9 to 6. The fraction of alpha hemes which are pentacoordinate in fully saturated nitrosyl hemoglobin, Hb4(NO), increases from 0.0 to 0.41 over the same pH range. Only in the presence of bound inositol-P6 are all 4 the alpha-NO hemes pentacoordinate. Thus, the expression of modified NO heme character is not simply a reflection of the formation of low affinity quaternary conformations. Rather, within this conformation the alpha chain iron atoms exhibit an equilibrium between hexa- and pentacoordinate structures which is perturbed markedly by both proton and phosphate binding. No intermediate coordination structure of the type suggested by Chevion et al. (Chevion, M., Stern, A., Peisach, J., Blumberg, W.E., and Simon, S. (1978) Biochemistry 17, 1745-1750) appears to occur since the observed alpha-NO heme spectra can always by represented quantitatively as a linear combination of the normal hexacoordinate and pentacoordinate signals. The formation of pentacoordinate alpha-NO causes this subunit to exhibit a higher affinity for nitric oxide. Thus on standing at low levels of saturation, there is a slow (t1/2 approximately equal to 8 min at pH 7, 25 degrees C) re-equilibration of ligand from beta to alpha subunits. The final ratio of alpha-NO to beta-NO is 2 to 1 in the absence of phosphates and greater than 10 to 1 in the presence of inositol hexaphosphate.  相似文献   

13.
The binding of carbon dioxide to human hemoglobin cross-linked between Lys alpha 99 residues with bis(3,5-di-bromosalicyl) fumarate was measured using manometric techniques. The binding of CO2 to unmodified hemoglobin can be described by two classes of sites with high and low affinities corresponding to the amino-terminal valines of the beta and alpha chains, respectively (Perrella, M., Kilmartin, J. V., Fogg, J., and Rossi-Bernardi, L. (1975b) Nature 256, 759-761. The cross-linked hemoglobin bound less CO2 than native hemoglobin at all CO2 concentrations in deoxygenated and liganded conformations, and the ligand-linked effect was reduced. Fitting the data to models of CO2 binding suggests that only half of the expected saturation with CO2 is possible. The remaining binding is described by a single affinity constant that for cross-linked deoxyhemoglobin is about two-thirds of the high affinity constant for deoxyhemoglobin A and that for cross-linked cyanomethemoglobin is equal to the high affinity constant for unmodified cyanomethemoglobin A or carbonmonoxyhemoglobin A. The low affinity binding constant for cross-linked hemoglobin in both the deoxygenated and liganded conformations is close to zero, which is significantly less than the affinity constants for either subunit binding site in unmodified hemoglobin. Comparing the low affinity sites in this modified hemoglobin to native hemoglobin suggests that cross-linking hemoglobin between Lys alpha 99 residues prevents CO2 binding at the alpha-subunit NH2 termini.  相似文献   

14.
It has been established that Molpadia hemoglobin tends to dissociate into subunits as oxygen is bound. The kinetics and equilibria of carbon monoxide and ethylisocyanide binding reported here show a dependence on protein concentration that supports the conclusion that the aggregated hemoglobin has a lower ligand affinity than the dissociated subunits. This is true for the isolated D-chain as well as for the unfractionated hemolysate that contains four distinct polypeptide chains (A-D). This indicates that even homopolymers of Molpadia hemoglobin have lower ligand affinity than the dissociated subunits. At high protein concentration hemolysates of Molpadia hemoglobin show slight cooperativity. The time course of ligand binding to the deoxy D-chain also suggests cooperative interactions. The low affinity of the aggregated state may have a different molecular explanation than in human hemoglobin where tetramers of identical subunits (as in Hb H) show high oxygen affinity. The absence of tyrosine and histidine at the C-terminal of the Molpadia D-chains also suggests a different stabilization of the low affinity deoxy state. An additional functional difference between Molpadia hemoglobin and human hemoglobin is that organic phosphates do not alter the ligand affinity of the sea cucumber hemoglobin.  相似文献   

15.
Hemoglobins (Hb) Yakima and Kempsey were purified from patients' blood with diethylaminoethyl cellulose column chromatography. The oxygen equilibrium curves of the two hemoglobins and the effects of organic phosphates on the function were investigated. In 0.1 M phosphate buffer, Hill's constants n for Hb Yakima and Hb Kempsey were 1.0 to 1.1 at the pH range for 6.5 to 8.0 and the oxygen affinities of both the mutant hemoglobins were about 15 to 20 times that of Hb A at pH 7.0. The Bohr effect was normal in Hb Yakima and one-fourth normal in Hb Kempsey. In the presence of inositol hexaphosphate, the oxygen affinities to Hb Yakima and Hb Kempsey were greatly decreased, and an interesting result revealed that these hemoglobins showed clear cooperativity in oxygen binding. Hill's constant n in the presence of inositol hexaphosphate was 1.9 for Hb Kempsey and 2.3 for Hb Yakima at pH 7.0. The cooperativities of these mutant hemoglobins were pH-dependent, and Hb Kempsey showed high cooperativity at low pH (n equal 2.1 at pH 6.6) and low cooperativity at high pH (n equal 1.0 at pH 8.0). Hb Yakima showed similar pH dependence in cooperativity. In the presence of inositol hexaphosphate, Hb A showed a pH-dependent cooperativity different from those of Hb Yakima and Hb Kempsey, namely, Hill's n was the highest in alkaline pH (n equal 3.0 at pH 8.0) and decreased at lower pH (n equal 1.5 at pH 6.5). 2,3Diphosphoglycerate bound with the deoxygenated Hb Yakima and Hb Kempsey, however, had no effect on the oxygen binding of these abnormal hemoglobin. The pH-dependent cooperativity of alpha1beta2 contact anomalous hemoglobin and normal hemoglobin was explained by the shifts in the equilibrium between the high and low ligand affinity forms.  相似文献   

16.
O2 transport was examined by measuring the fractional saturation of concentrated hemoglobin solutions flowing through an artificial capillary that was approximately 27 micron in diameter and embedded in a silicone rubber film approximately 170 micron thick. The effects of pH, hemoglobin concentration, O2 tension, temperature, and organic phosphate were measured and analyzed quantitatively by a rigorous mathematical model that included the geometry of the capillary in the silicone film, parabolic flow velocity distributions inside the lumen, and cooperative O2 binding by hemoglobin. The rates of both oxygenation and deoxygenation were limited by diffusion and governed by the magnitude of the O2 gradient between the intracapillary fluid phase and the external gas space. In uptake experiments, O2 flux is determined primarily by the external O2 tension (16-160 mmHg in our experiments) because the internal O2 pressure is kept small due to chemical combination with hemoglobin. In release experiments, the external O2 tension is maintained at zero, and the transport rate is determined by the intracapillary partial pressure of O2 that is proportional to the O2 half-saturation pressure of hemoglobin value of the hemoglobin sample. As a result, factors that change the affinity of hemoglobin for O2, such as pH, temperature, and organic phosphate concentration, influence strongly the rate of O2 release but have little effect on the rate of O2 uptake. These properties are physiologically advantageous, since a decrease in pH or an increase in temperature during exercise increases both the rate and extent of deoxygenation while not altering the kinetics of oxygenation.  相似文献   

17.
Kani K  Park E  Landgraf R 《Biochemistry》2005,44(48):15842-15857
The extracellular, ligand binding regions of ErbB receptors consist of four domains that can assume at least two alternative conformations, extended and locked. The locked conformation, observed in several crystal structures, is held together by a noncovalent intramolecular tether and is incompatible with current models for receptor dimerization and ligand activation. Based on structures of ligand-receptor complexes in the extended conformation, the high affinity ligand binding pocket between domains I and III is disrupted in the locked conformation. Therefore the biological role of the locked conformation is not clear. To address the impact of the locked conformation on ligand binding, we compared extracellular domains of wild-type ErbB3, mutant domains in a constitutively locked or extended conformation and partial extracellular domain constructs. We found that the constitutively locked receptor domains and truncated constructs carrying only domains I-II or III-IV strongly bind ligand, albeit with reduced affinity compared to wild-type receptor. This suggests that the locked conformation cannot be discounted for ligand binding. The significant binding by both partial interfaces in domains I and III also suggests that "partial bivalency" may be the reason for the low nanomolar and high picomolar binding observed for ErbB3 in the respective "low" and high affinity states. In contrast to EGFR (ErbB1), ErbB3 retains high ligand binding affinity at an endosome-comparable pH in both the extended and locked conformations. Ligand affinity for the locked conformation even improves at low pH. For ErbB3, the contribution of domain I to ligand binding is strong and increases at low pH while its contribution is thought to be minimal for EGFR, regardless of pH. This shift in domain contribution and pH dependency provides a mechanistic explanation for some of the divergent properties of EGFR and ErbB3.  相似文献   

18.
Opossum hemoglobin assumes a T quaternary structure upon NO ligation in the absence of organic phophates at pH 6.7. In addition, stripped opossum hemoglobin exhibits a low oxygen affinity when compared to human hemoglobin and a pH-dependent heme-heme interaction with an n value of 2.14 at pH 7.0 and 2.46 at pH 7.35. These observations indicate that opossum hemoglobin may have a destabilized oxy structure when compared to hemoglobin A due to differences in primary structure. Thus, the strong trans ligand effect of nitric oxide is able to disrupt the proximal histidine-iron bond in the alpha-hemes triggering a conformational transition to the T state. Absence of a distal histidine in the alpha-subunits and, therefore an impaired donor acceptor interaction with the sixth ligand, could contribute to the lack of stability of the R quaternary structure in opossum nitrosylhemoglobin. The reduced oxygen affinity of opossum hemoglobin may be compensated for by other physiological factors such as a reduced phosphate effect.  相似文献   

19.
Thermodynamics and kinetics for cyanide, azide, thiocyanate and imidazole binding to recombinant ferric Vitreoscilla sp. homodimeric hemoglobin (Vitreoscilla Hb) have been determined at pH 6.4 and 7.0, and 20.0 degrees C, in solution and in the crystalline state. Moreover, the three-dimensional structures of the diligated thiocyanate and imidazole derivatives of recombinant ferric Vitreoscilla Hb have been determined by X-ray crystallography at 1.8 A (Rfactor=19.9%) and 2.1 A (Rfactor=23.8%) resolution, respectively. Ferric Vitreoscilla Hb displays an anticooperative ligand binding behaviour in solution. This very unusual feature can only be accounted for by assuming ligand-linked conformational changes in the monoligated species, which lead to the observed 300-fold decrease in the affinity of cyanide, azide, thiocyanate and imidazole for the monoligated ferric Vitreoscilla Hb with respect to that of the fully unligated homodimer. In the crystalline state, thermodynamics for azide and imidazole binding to ferric Vitreoscilla Hb may be described as a simple process with an overall ligand affinity for the homodimer corresponding to that for diligation in solution. These data suggest that the ligand-free homodimer, observed in the crystalline state, is constrained in a low affinity conformation whose ligand binding properties closely resemble those of the monoligated species in solution. From the kinetic viewpoint, anticooperativity is reflected by the 300-fold decrease of the second-order rate constant for cyanide and imidazole binding to the monoligated ferric Vitreoscilla Hb with respect to that for ligand association to the ligand-free homodimer in solution. On the other hand, values of the first-order rate constant for cyanide and imidazole dissociation from the diligated and monoligated derivatives of ferric Vitreoscilla Hb in solution are closely similar. As a whole, ligand binding and structural properties of ferric Vitreoscilla Hb appear to be unique among all Hbs investigated to date.  相似文献   

20.
W H Huestis  M A Raftery 《Biochemistry》1975,14(9):1886-1892
19-F and 31-P nuclear magnetic resonance (NMR) spectroscopy have been used to study the ligand binding process in human hemoglobin. 19-F nuclear magnetic resonance studies of hemoglobin specifically trifluoroacetonylated at cysteine-beta93 have permitted observation and characterization of molecular species containing two and three ligands. The behavior of these intermediate species in response to changes in pH and organic phosphate concentration is not completely consistent with any of the current theories of allostery. A model consistent with the 19-F and 31-P NMR data is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号