首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Synthetic biology is a newly developed field of research focused on designing and rebuilding novel biomolecular components, circuits, and networks. Synthetic biology can also help understand biological principles and engineer complex artificial metabolic systems. DNA manipulation on a large genome-wide scale is an inevitable challenge, but a necessary tool for synthetic biology. To improve the methods used for the synthesis of long DNA fragments, here we constructed a novel shuttle vector named p GF(plasmid Genome Fast) for DNA assembly in vivo. The BAC plasmid p CC1 BAC, which can accommodate large DNA molecules, was chosen as the backbone. The sequence of the yeast artificial chromosome(YAC) regulatory element CEN6-ARS4 was synthesized and inserted into the plasmid to enable it to replicate in yeast. The selection sequence HIS3, obtained by polymerase chain reaction(PCR) from the plasmid p BS313, was inserted for screening. This new synthetic shuttle vector can mediate the transformation-associated recombination(TAR) assembly of large DNA fragments in yeast, and the assembled products can be transformed into Escherichia coli for further amplification. We also conducted in vivo DNA assembly using p GF and yeast homologous recombination and constructed a 31-kb long DNA sequence from the cyanophage PP genome. Our findings show that this novel shuttle vector would be a useful tool for efficient genome-scale DNA reconstruction.  相似文献   

5.
6.
7.
Rat selenoprotein W (SeW) promoter activity was investigated using different concentrations of cadmium, copper, and zinc. Two fragments (404 and 1265 bp) of the SeW promoter, containing a single metal response element (MRE), were ligated into the multiple cloning site of a pGL3-Basic reporter plasmid. The constructs were transfected into cultured C6 (rat glial) and L8 (myoblast) cells and promoter activity measured by means of luciferase reporter gene fused to the SeW promoter fragments in the reporter plasmid. With post-transfection exposure of these cell lines to these metals, copper and zinc, but not cadmium, significantly increased promoter activity of the unmutated 1265 bp (not 404 bp) construct (p<0.05) only in the C6 cells. Mutation of the MRE sequence abolished promoter response to metal exposure but did not eliminate promoter activity. The results suggest that SeW expression in glial cells can be increased on exposure to copper and zinc and that this response is dependent on the MRE sequence present in the SeW promoter.  相似文献   

8.
9.
10.
11.
D L Ludwig  C V Bruschi 《Plasmid》1991,25(2):81-95
The endogenous 2-microns plasmid of Saccharomyces cerevisiae has been used extensively for the construction of yeast cloning and expression plasmids because it is a native yeast plasmid that is able to be maintained stably in cells at high copy number. Almost invariably, these plasmid constructs, containing some or all 2-microns sequences, exhibit copy number levels lower than 2-microns and are maintained stably only under selective conditions. We were interested in determining if there was a means by which 2-microns could be utilized for vector construction, without forfeiting either copy number or nonselective stability. We identified sites in the 2-microns plasmid that could be used for the insertion of genetic sequences without disrupting 2-microns coding elements and then assessed subsequent plasmid constructs for stability and copy number in vivo. We demonstrate the utility of a previously described 2-microns recombination chimera, pBH-2L, for the manipulation and transformation of 2-microns as a pure yeast plasmid vector. We show that the HpaI site near the STB element in the 2-microns plasmid can be utilized to clone yeast DNA of at least 3.9 kb with no loss of plasmid stability. Additionally, the copy number of these constructs is as high as levels reported for the endogenous 2-microns.  相似文献   

12.
13.
14.
15.
In vitro test systems using yeast cells are a useful tool for the determination of the estrogenic activity of estrogens, phyto- and xeno-estrogens and can be used for monitoring large sample numbers in a routine analysis procedure. Our conventional transactivation assay functions with an expression plasmid expressing estrogen receptor α (ERα) under the control of a copper-inducible CUP1 promoter and a reporter plasmid expressing β-galactosidase under the control of the vitellogenin estrogen response element (ERE). In the novel yeast screen system the lacZ gene in the reporter plasmid was substituted by a gene for green fluorescent protein (GFP). Incubation of yeast with various concentrations of estrogenically active substances led to expression of the reporter gene product GFP in a dose dependent manner. The yeast transactivation assay was further down-scaled to be performed in a microplate scale, which is an important step to facilitate handling of large sample numbers. The sensitivity and reproducibility of the novel test system could be confirmed by analysis of the potencies of various estrogenically active substances. Thus, the newly developed yeast estrogen screen using GFP as a reporter can substitute the assay that has been used for a period of several years.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号