首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although many cells anchor surface proteins via moieties that are sensitive to phosphatidylinositol-specific phospholipase C (PI-PLC), the anchor moieties of surface proteins of mouse L929 cells resist PI-PLC. By constructing stable hybrids between L929 and lymphoma cells that express glycolipid-anchored proteins in a PI-PLC-sensitive form, we show that PI-PLC resistance behaves as a recessive trait. Since putative mannolipid precursors of the lipid anchors bear alkali-labile substituents which make them resist PI-PLC, these observations are most simply interpreted by postulating that L929 lacks a critical anchor deacylase. Unlike the L929 cell line, two of its descendants, the LM cell line and its thymidine kinase-negative variant (LM-TK-), do not express glycolipid-anchored proteins on their surface. Moreover, unlike L929 cells, LM-TK- cells rapidly inactivate at least one lipid-anchored enzyme in a compartment sensitive to acidotropic amines and leupeptin. By fusion of LM-TK- cells to mouse Thy-1- lymphoma mutants and monitoring of surface expression of lipid-anchored proteins, we assign LM-TK- to lymphoma mutant complementation group H. This genetic assignment is matched by analysis of mannolipids of L929, LM-TK-, wild-type, and class H lymphoma mutant cells: striking similarities are seen between the two wild-type cells by contrast to the mutants. Since the differences pertain to lipids which have properties consistent with their being anchor precursors, we suggest that LM-TK- has a lesion in the synthesis of anchor precursor mannolipids.  相似文献   

2.
3.
Deficient expression of glycoinositol phospholipid (GPI) anchored proteins in affected paroxysmal nocturnal hemoglobinuria (PNH) cells has been traced to a defect in GPI anchor assembly. In a previous study (Schubert, J., Schmidt, R. E., and Medof, M. E. (1993) J. Biol. Chem., in press) we characterized the biosynthesis of putative Man-containing GPI anchor precursors in normal peripheral blood lymphocytes and investigated assembly of these intracellular GPI intermediates in CD48- affected and CD48+ unaffected T and natural killer cell lines of PNH patients. We found that affected T cells from five patients exhibited a uniform defect in which dolichol-phosphoryl-Man was synthesized but no GPI mannolipids were expressed. In this study, membranes of patients' affected T cells were labeled with UDP-[3H]GlcNAc to evaluate earlier steps in GPI synthesis, and intact cells were fused to Thy-1- murine lymphoma mutants harboring different defects in early GPI assembly to test for the presence of corresponding or complementary lesions. In all cases, affected cell membranes failed to assemble GlcNAc-inositol phospholipid, the initial precursor of GPI anchor structures, and the intact cells failed to complement class A mutants while complementing other classes. Affected polymorphonuclear leukocytes from three additional patients of different origin were then labeled with [3H]Man and the labeling patterns found to correspond to those obtained with the T lymphocytes. Taken together the data indicate that the genetic lesion in PNH cells resides in a DNA element which: 1) encodes a product required for the synthesis of GlcNAc-inositol phospholipid, 2) corresponds to that altered in class A Thy-1- murine lymphoma mutants, and 3) is commonly affected in different patients.  相似文献   

4.
Thy-1 glycoprotein is a member of a class of proteins which are anchored to the plasma membrane via a covalently bound glycophospholipid. The biosynthesis and anchoring of Thy-1 were investigated in a family of wild-type and mutant (complementation groups A, B, C, E, and F) T lymphomas. The mutants all synthesize Thy-1 but fail to express it on the cell surface. Analysis of the size of D-[2-3H]mannose-labeled dolichol-linked oligosaccharides showed that the class E mutant is the only cell line which does not synthesize dolichol-P-P-Glc3Man9GlcNAc2. Turnover and possible secretion of Thy-1 by mutant T lymphoma cells were documented in D-[2-3H]mannose pulse-chase experiments. The turnover of [3H]Thy-1 for all wild-type cells is considerably slower than for the mutant cells. Class B and E cells release appreciably more [3H]Thy-1 than wild-type cells. Additional experiments were performed to determine the electrophoretic mobility and hydrophobicity of cell-associated and released forms of Thy-1 labeled overnight with [3H]mannose. All wild-type and class A, C, E, and F mutant cells contain a major Triton X-114 binding species of cell-associated [3H]Thy-1. All extracellular [3H]Thy-1 was almost exclusively hydrophilic. The presence of two Thy-1 anchor components, ethanolamine and palmitate, was investigated. Biosynthetic labeling with [3H]palmitic acid showed that all of the wild-type cells but none of the mutants incorporated this anchor precursor into Thy-1. In [3H]ethanolamine-labeling experiments, incorporation was detected in the Thy-1 of all wild-type cells and in two mutants, S1A-b and T1M1-c. Based on the above studies, the phenotype of Thy-1 negative T lymphoma mutants can be re-evaluated. In classes A and F, dolichol-linked oligosaccharides appear normal and no anchor is detected. In class B, dolichol-linked oligosaccharides appear normal, a partial anchor may be present, and a substantial amount of Thy-1 is released. In class C, dolichol-linked oligosaccharides appear normal and a partial anchor may be present. In class E, truncated dolichol-linked oligosaccharides are formed, no anchor is detected, but a substantial amount of newly synthesized Thy-1 is released. These observations are discussed with reference to the possibility that the lesions which characterize the mutants pertain to the biosynthesis of the glycophospholipid moiety of Thy-1.  相似文献   

5.
To aid in studies of human glycoinositol-phospholipid (GPI) anchor pathway biochemistry in normal and affected paroxysmal nocturnal hemoglobinuria cells, GPI anchor-defective human K562 cell lines were derived by negative fluorescent sorting of anti-decay-accelerating factor (DAF) monoclonal antibody-stained cells either following or in the absence of ethylmethylsulfonate pretreatment. The resulting cloned cells showed deficiencies of both DAF and GPI-anchored CD59, some (designated group A) exhibiting total absence and some (designated group B) exhibiting approximately 10% levels of surface expression of the two proteins. In heterologous cell fusions, group A clones complemented defective Thy-1 expression by class A, B, C, E, and I Thy-1-negative lymphoma lines, but not H or D lines, the latter of which is defective in the Thy-1 structural gene. In contrast, group B clones complemented all previously described GPI anchor pathway-defective lymphoma classes. Immunoradiomatic assays of cells and supernatants and 35S biosynthetic labeling showed that group A cells degraded DAF protein while group B cells secreted it but failed to attach a GPI anchor structure. [3H]Man labeling of intact cells and UDP-[3H]GlcNAc and GDP-[3H]Man labeling of broken cell preparations demonstrated that group A cells failed to synthesize GlcNAc- and GlcN-PI (GPI-A and -B) as well as more polar mannolipids, whereas group B cells showed accumulation of GlcNAc-PI with approximately 10-fold diminished levels of GlcN-PI and more polar mannolipids. The failed assembly of GlcNAc-PI in group A cells and the reduced conversion of this intermediate to GlcN-PI in group B cells indicates that the former harbors a defect in UDP-GlcNAc transferase or in assembly of its PI acceptor, while the latter harbors a defect in GlcN-PI deacetylase activity.  相似文献   

6.
A single metabolic path leading to synthesis of ether lipids is known in animal cells, the major products of which are plasmalogens. To learn whether this peroxisomal path is also responsible for the synthesis of base-resistant lipid components of glycosylphosphoinositol (GPI)-anchored membrane proteins, we have investigated the structure of anchor precursor mannolipids both in wild-type cells (CHO-K1 and a macrophage-like line, RAW 264.7) and in two corresponding mutant cells in which ether lipid biosynthesis is severely impaired. We observe that the precursor mannolipids of both the wild-type and mutant cells do not include alkylglycerol. Nevertheless, both wild-type and mutant cells express cell surface GPI-anchored placental alkaline phosphatase (AP) which includes alkali-resistant hydrophobic chains in its anchor moiety. Thus, (i) in normal AP GPI anchor synthesis, any ether-linked substituents must be added either immediately before, during, or after anchor addition to AP, and (ii) the classical peroxisomal path for ether lipid synthesis appears not to contribute to the synthesis of GPI anchors.  相似文献   

7.
The glycosyl phosphatidylinositol (PI) membrane anchors of several proteins contain 1-alkyl-2-acyl-glycerophosphoinositol. Although this PI analog has never been found free in cells, the presence of "alkyl-PI" as a component of some membrane anchors suggests its existence. The resistance of ether linkages to cleavage by mild alkali treatment was used to detect possible alkyl chains in the [3H]inositol-labeled phospholipids of several murine lymphoma cell lines which normally express the glycosyl PI-anchored protein Thy-1. One lipid, which arose from alkaline hydrolysis of PI and had mobility on thin layer chromatography similar to lyso-PI, was detected in all wild-type cell lines. Analysis of the base-stable inositol lipids of several lymphoma lines that are deficient in Thy-1 surface expression because of defective biosynthesis of the glycosyl PI membrane anchor revealed that the putative alkyl-PI was missing in the class F mutant. The levels of both the ethanolamine- and choline-containing plasmalogens were also decreased 10-fold in these cells, suggesting a general defect in the production of ether lipids. The activity of the peroxisomal form of dihydroxyacetonephosphate acyltransferase, which catalyzes the first step of ether lipid biosynthesis, was found to be 10-fold decreased relative to the wild-type level. Unlike previously described Chinese hamster ovary cell mutants deficient in ether lipids (Zoeller, R. A., and Raetz, C. R. H. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 5170-5174), the class F Thy-1- cells contain intact functional peroxisomes. Attempts to restore the putative alkyl-PI to the class F mutants by alkylglycerol supplementation were unsuccessful, despite concomitant restoration of the much larger plasmenylethanolamine pool, suggesting that there are some differences in the biosynthesis of this PI analog and plasmalogens that are presently not understood. Although the deficiencies in ether lipids and surface expression of Thy-1 in the class F mutants could also be due to separate mutations, our findings raise the possibility that alkyl-PI exists in animal cells and may be an obligate precursor for the biosynthesis of the glycosyl-PI membrane anchor of Thy-1.  相似文献   

8.
A study was conducted to determine whether retinyl phosphate would act as substrate for the enzymatic synthesis of mannosyl retinyl phosphate. Retinyl phosphate, prepared chemically, supported the growth of vitamin A-deficient rats at the same rate as retinol. It also stimulated the uptake of [14C]mannose from GDP-[14C]mannose into total chloroform-methanol extractable lipid. This reaction occurred in the presence of ATP, Mn2+, detergent (Zonyl A), and a membrane-rich enzyme preparation from the livers of vitamin A-deficient rats, provided that a lipid extract of the membrane preparation of alpha-L-lecithin was also added. Total chloroform-methanol-extractable, labeled mannolipid was separated into two principal labeled mannolipids by thin-layer or column chromatography or by differential solvent extraction. The properties of these mannolipids identified them as glycophospholipids: one was identical with authentic synthetic dolichyl mannosyl phosphate, and the other was concluded to be mannosyl retinyl phosphate because of its incorporation of radioactivity from [3H]retinyl phosphate, its rapid hydrolysis by dilute acid, and the formation of substance that cochromatographed with retinol upon its acid hydrolysis. The presence of ATP or GTP was essential for the stimulation of mannolipid synthesis, probably because of their protective action on the substrates against phosphatases present in the crude enzyme fraction. A pH of 6.0-6.2 favored the formation of dolichyl mannosyl phosphate; a higher pH (6.7-7.0) that of mannosyl retinyl phosphate.  相似文献   

9.
Hydrophilic anchor-deficient Thy-1 is secreted by a class E mutant T lymphoma   总被引:16,自引:0,他引:16  
S H Fatemi  A M Tartakoff 《Cell》1986,46(5):653-657
To investigate the mechanism of glycophospholipid anchoring of the surface antigen Thy-1, we have undertaken a comparative biosynthetic study using a wild-type Thy-1+ murine T lymphoma (BW5147) and a mutant T lymphoma (class E) that synthesizes Thy-1 but fails to express it on the plasma membrane. Labelling experiments with D-[2-3H]mannose demonstrate that, unlike the wild type, the mutant cells are secreting large amounts of Thy-1 and that the secreted molecules are hydrophilic. Moreover, unlike the wild type, they fail to incorporate [3H]palmitic acid into Thy-1. Both wild-type and mutant cells do incorporate labeled galactose and fucose into Thy-1. We conclude that the lack of surface expression of Thy-1 by this mutant results from the failure to add anchor components to Thy-1.  相似文献   

10.
Murine T-lymphomas and Thy-1- mutants were labeled overnight with [3H]ethanolamine to detect proteins which possess a glycophospholipid anchor. When labeled cells were treated with 10% trichloroacetic acid and then analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography, both Thy-1 and a second intensely labeled protein (46 kDa) were observed. The presence of the radiolabeled 46-kDa protein in wild type and class E Thy-1 negative cells (cells in which Thy-1 is synthesized but cannot be labeled with [3H]ethanolamine) suggested incorporation into a distinct moiety. Labeling of the 46-kDa protein with [3H]ethanolamine is rapidly inhibited by cycloheximide. Further characterization of the 46-kDa protein by subcellular fractionation and Triton X-114 partitioning indicated that the protein is located in the cytosol. The protein is basic and does not bind to either concanavalin A or wheat germ agglutinin. Labeling of a 46-kDa protein has also been demonstrated in Chinese hamster ovary, COS, rat myeloma, cloned human T-lymphocytes, and HeLa cells. Pronase digestion of the [3H]ethanolamine-labeled 46-kDa protein of wild type lymphoma cells generated a nonbasic and polar labeled fragment which is labile to strong acid and base ([3H]ethanolamine is liberated), insensitive to periodate oxidation and alkaline phosphatase, and does not bind to concanavalin A or wheat germ agglutinin. Judging from methylation studies, the labeled ethanolamine residue does not contain a free amino group. Based on these results, we report a novel post-translational modification of selected protein(s) by the covalent addition of [3H]ethanolamine.  相似文献   

11.
The Thy-1 antigen of the surface of lymphocytes and neurons is anchored to the plasma membrane via a glycophospholipid moiety. In contrast, the Thy-1 synthesized by the class E Thy-1 negative mutant lymphoma is secreted as a hydrophilic species. The present investigation uses the approach of biosynthetic labeling to investigate further the structure of the intracellular Thy-1 of wild-type cells and the secreted Thy-1 of these mutant cells. In the wild-type cells, Thy-1 can be labeled with [3H] mannose, [3H]galactose, [3H]fucose, [3H]ethanolamine, and [3H]palmitic acid. In the latter two cases the label is recovered almost exclusively in a detergent-binding Pronase fragment of the protein. The incorporated label is in the form of [3H]ethanolamine, or [3H]palmitate and stearate, respectively. Reductive methylation of biosynthetically labeled Thy-1 and a nonradioactive sample of Thy-1 shows that [3H]ethanolamine is incorporated equally into two residues of ethanolamine, only one of which has a free amino group. A single residue of glucosamine with a free amino group is also detected. Each of the sugar precursors is incorporated with extensive conservation of chemical identity. In the class E cells, each of the labeled sugars but neither [3H]ethanolamine nor [3H]palmitate is incorporated into Thy-1. The anchor moiety therefore appears to be entirely missing, although N-linked oligosaccharide processing is essentially normal. We postulate that the anchor deficiency in the mutant cells results from a biosynthetic lesion.  相似文献   

12.
Recent evidence shows that the mature Thy-1 surface glycoprotein lacks the C-terminal amino acids 113 to 143 predicted from the cDNA sequence and is anchored in the plasma membrane by a complex, phosphatidylinositol-containing glycolipid attached to the alpha-carboxyl group of amino acid 112. Here we studied the biosynthesis of Thy-1 in two previously described and two newly isolated Thy-1-deficient mutant cell lines. Somatic cell hybridization indicated that their mutations affected some processing step rather than the Thy-1 structural gene. The Thy-1 made by mutants of classes C, F, and H bound detergent but, in contrast to wild-type Thy-1, their detergent-binding moieties could not be removed by phospholipase C. In addition, tryptophan, which only occurs in position 124, was incorporated into Thy-1 of these mutants but not of wild-type cells. Last, the Thy-1 of wild-type but not mutant cells could be radiolabeled with [3H]palmitic acid. Together, these findings strongly suggest that mutants of classes C, F, and H accumulate a biosynthetic intermediate of Thy-1 which retains at least part of the hydrophobic C-terminal peptide. The Thy-1 of these mutants remained endoglycosidase H sensitive, suggesting that it accumulated in the rough endoplasmic reticulum or the Cis-Golgi. A different Thy-1 intermediate was found in a class B mutant cell line: the Thy-1 of this mutant was 2 kilodaltons smaller than the Thy-1 of other cell lines, did not bind detergent, and was rapidly secreted via a normal secretory pathway.  相似文献   

13.
Thy-1 is a 25-37 kDa glycosylphosphatidylinositol (GPI)-anchored protein involved in T cell activation, neurite outgrowth, apoptosis, tumor suppression, wound healing, and fibrosis. To mediate these diverse effects, Thy-1 participates in multiple signaling cascades. In this review, we discuss Thy-1 signaling primarily in non-immunologic cell types, including neurons, mesangial cells, ovarian cancer cells, nasopharyngeal carcinoma cells, endothelial cells, and fibroblasts. We review the current literature regarding Thy-1 signaling via integrins, protein tyrosine kinases, and cytokines and growth factors; and the roles of these signaling pathways in cellular adhesion, apoptosis, cell proliferation, and cell adhesion and migration. We also discuss the role of Thy-1 localization to lipid rafts, and of the GPI anchor in Thy-1 signaling. Ongoing research on the mechanisms of Thy-1 signaling will add to our understanding of the diverse physiologic and pathologic processes in which Thy-1 plays a role.  相似文献   

14.
Several proteins that are anchored to the surface of T lymphocytes via a phosphatidylinositol (PI) moiety can initiate cell stimulation upon cross-linking. Inasmuch as these proteins do not traverse the plasma membrane, it is not clear how they are capable of signaling across the membrane. Herein we report two distinct sets of experiments that examine the consequence of cross-linking PI-anchored molecules on murine T cells. We first analyzed the fate of antibody cross-linked TAP (Ly-6A.2) and Thy-1 molecules on T-T hybrids. Using an assay to measure receptor-mediated endocytosis, an intracellular accumulation of 125I labeled anti-TAP and anti-Thy-1 mAb was documented that was specific and Ag dependent. The internalization of these molecules was confirmed by cytotoxicity assays using antibody-toxin conjugates, and electron microscopic studies. Although the PI-anchored proteins lack a cytoplasmic domain that is necessary for the internalization of many receptors, they nevertheless can be induced to enter the cell upon cross-linking. The rate of entry of cross-linked TAP and Thy-1 into cells was shown to be 10 and 2% per hour, respectively, which is considerably less than that observed for the transferrin receptor or TCR/CD3 complex. To assess whether the internalization of TAP and Thy-1 might be of importance in their ability to stimulate T cells, we attempted to cross-link these molecules under conditions where the mAb or its cross-linked complex can not enter the cell. We observed that anti-TAP and anti-Thy-1 mAb conjugated to a cell impermeant matrix fail to stimulate T cells. This loss of stimulatory activity was observed with multiple T-T hybridomas and mAb over a wide titration of antibody concentration and was independent of the mAb isotype. Results from experiments with anti-Ig cross-linking of the mAb-PI anchored protein complex suggested that the loss of T cell stimulation upon mAb immobilization is not simply due to an alteration in the degree of antibody cross-linking. These findings were generalized to three distinct PI-anchored proteins: TAP, Thy-1, and Ly6C on normal T cells. When the same cells were stimulated through the TCR/CD3 complex, only immobilized mAb are stimulatory. These results demonstrate a marked difference in the cross-linking requirements for stimulating T cells through PI-anchored molecules in contrast to the transmembrane TCR complex. Furthermore, these findings raise the possibility that molecular internalization of Ab-PI-anchored complexes may be necessary in signaling through these molecules.  相似文献   

15.
Glycosylphosphatidylinositol (GPI)-anchored membrane proteins are proposed to interact preferentially with glycosphingolipids and cholesterol to form microdomains, which may play an important role in apical targeting and signal transduction. The objective of the present study was to investigate the interaction of the GPI-anchored protein Thy-1 with phospholipids and a glycosphingolipid. Purified Thy-1 was reconstituted into lipid bilayer vesicles of dimyristoyl-phosphatidylcholine (DMPC) alone or in combination with galactosylceramide (GC). The ability of Thy-1 to perturb the gel to a liquid-crystalline phase transition of DMPC was examined by differential scanning calorimetry. As the mole fraction of Thy-1 increased, the phase transition enthalpy, deltaH, declined. Analysis indicated that each molecule of Thy-1 perturbed over 50 phospholipids, suggesting that, in addition to the anchor insertion into the bilayer, the protein itself may interact with the membrane surface. Inclusion of 5% w/w GC in the bilayer resulted in a striking change in the interaction of Thy-1 with phospholipids. At low Thy-1 content, there was a reduction in the phase transition temperature and an increase in phospholipid cooperativity, suggesting the formation of Thy-1/GC-enriched domains. DeltaH initially decreased with increasing Thy-1 content of the bilayer; however, at higher Thy-1 mole ratios, deltaH rose again. These results are interpreted in terms of a model whereby, at low protein:lipid mole ratios, Thy-1 preferentially sequesters GC to form enriched microdomains. At high protein:lipid mole ratios, Thy-1 may alter its conformation in response to steric crowding within these domains such that its interaction with the bilayer surface is reduced.  相似文献   

16.
A Conzelmann  A Spiazzi  R Hyman    C Bron 《The EMBO journal》1986,5(12):3291-3296
Recent evidence shows that mature Thy-1 glycoprotein lacks amino acids 113-143 predicted from the cDNA sequence and is anchored to the plasma membrane by a phosphatidylinositol-containing glycolipid attached to amino acid 112. Previously characterized Thy-1-deficient mutant lymphoma lines of complementation classes A and E were analysed. They make detergent binding Thy-1 precursors but, in contrast to wild-type, the detergent binding moiety cannot be removed by phospholipase C. Moreover, tryptophan which only occurs at position 124 is incorporated into mutant but not parental Thy-1. This suggests that the mutants make a Thy-1 precursor of 143 amino acids but fail to replace its C-terminal end by a glycolipid anchor.  相似文献   

17.
Abstract— Mannose was transferred from GDP-[14C]mannose by homogenates of embryonic chick and adult rat brain to mannolipids with properties identical to manriosyl-phosphoryl-dihydropolyisoprenols. Embryonic chick brain formed six-fold larger quantities of mannolipid than adult rat brain. The reaction was stimulated by Mn2+ ions and Triton X-100 but inhibited by EDTA. Phosphoenolpyruvic acid had no effect on the reaction. A crude mitochondrial fraction was two to three times more active than the microsomal fraction. All radioactivity in the mannolipid could be displaced by the addition of non-radioactive GDP-mannose. The endogenous lipid acceptor in brain was readily labelled in vivo by injection of [3H]mevalonate into the amniotic sac of 7-day-old embryos. The mannolipid formed had the properties of an acidic phospholipid on column and TLC, was stable to dilute alkali but readily cleaved by dilute acid. Synthesis was markedly stimulated by the addition of pig liver or calf brain dolichol phosphate in the presence of Triton X-100 and Mn2+. The mannolipid so formed displayed chemical characteristics identical to the endogenous lipid acceptor. Incubation of the purified radioactive mannolipid with the 'post-nuclear' fraction from 14-day-old embryonic chick brain in the presence of EDTA and Triton X-100 resulted in the transfer of 40-50 per cent of the radioactive mannose to protein and 40-45 per cent to water soluble compounds. The efficiency of transfer of radioactivity from endogenously formed mannolipid with or without the addition of dolichol phosphate was similar to exogenously added highly purified mannolipid. These results are compatible with the hypothesis that synthesis of the mannose core of brain glycoproteins involves the synthesis first of mannosyl-phosphoryl-dolichols followed by transfer of the mannose to glycoprotein.  相似文献   

18.
Decay-accelerating factor (DAF) is an integral membrane protein that inhibits amplification of the complement cascade on the cell surface. We and other investigators have shown that DAF is part of a newly characterized family of proteins that are anchored to the cell membrane by phosphatidylinositol (PI). The group includes the variant surface glycoprotein (VSG) of African trypanosomes, the p63 protein of Leishmania, acetylcholinesterase (AChE), alkaline phosphatase, Thy-1, 5'-nucleotidase, and RT6.2--an alloantigen from rat T cells. The structure of the membrane anchor has been best characterized for VSG, but chemical studies of the membrane anchors of AChE and Thy-1 suggest that similar glycolipid moieties anchor these proteins to the cell surface. In the VSG, the membrane anchor consists of an ethanolamine linked covalently to an oligosaccharide and glucosamine; the entire complex is anchored to the cell membrane by PI. Immunologically, this glycolipid defines an epitope, the cross-reacting determinant (CRD), that is only revealed after removal of the diacyl glycerol anchor by a phospholipase C. By Western blotting, we show here that DAF-S (DAF released from the membrane by PI-specific phospholipase C [PIPLC]) also contains CRD. Using a newly developed immunoradiometric assay (IRMA) in which the solid-phase capturing antibody is a monoclonal antibody to DAF and the second antibody is anti-CRD, we have been able to quantitate DAF-S. By IRMA, we show that the reaction between anti-CRD and DAF-S is specific, since the binding is competitively inhibited only by the soluble form of the VSG. These observations further support the concept that the glycolipid anchors of this new family of proteins have similar structures. DAF is also found as a soluble protein in various tissue fluids as well as in Hela cell supernatants. No evidence for the presence of the CRD epitope was found on these proteins, suggesting that these forms of DAF are not released from the surface of cells by endogenous phospholipases.  相似文献   

19.
Using mutational and proteomic approaches, we have demonstrated the importance of the glycosylphosphatidylinositol (GPI) anchor pathway for cell wall synthesis and integrity and for the overall morphology of the filamentous fungus Neurospora crassa. Mutants affected in the gpig-1, gpip-1, gpip-2, gpip-3, and gpit-1 genes, which encode components of the N. crassa GPI anchor biosynthetic pathway, have been characterized. GPI anchor mutants exhibit colonial morphologies, significantly reduced rates of growth, altered hyphal growth patterns, considerable cellular lysis, and an abnormal "cell-within-a-cell" phenotype. The mutants are deficient in the production of GPI-anchored proteins, verifying the requirement of each altered gene for the process of GPI-anchoring. The mutant cell walls are abnormally weak, contain reduced amounts of protein, and have an altered carbohydrate composition. The mutant cell walls lack a number of GPI-anchored proteins, putatively involved in cell wall biogenesis and remodeling. From these studies, we conclude that the GPI anchor pathway is critical for proper cell wall structure and function in N. crassa.  相似文献   

20.
Thy-1 is a cell surface glycoprotein containing three N-linked glycosylation sites and a glycosylphosphatidylinositol (GPI) anchor. The effect of the anchor on its N-linked glyco-sylation was investigated by comparing the glycosylation of soluble recombinant Thy-1 (sThy-1) with that of recombinant GPI anchored Thy-1, both expressed in Chinese hamster ovary cells. The sThy-1 was produced in a variety of isoforms including some which lacked carbohydrate on all three sequons whereas the GPI anchored form appeared fully glycosylated like native Thy-1. This was surprising as the attachment of N-linked sugars occurs cotranslationally and it was not expected that the presence of a C-terminal GPI anchor signal sequence would affect sequon occupancy. Furthermore sThy-1 lacking glycosylation could be produced with the inhibitor tunicamycin but in contrast cell surface expression of unglycosylated GPI anchored Thy-1 could not be obtained. The GPI anchored form appeared less processed with almost 4-fold more oligo-mannose oligosaccharides than in sThy-1 and also with less sialylated and core fucosylated biantennary glycans. Possible mechanisms whereby the anchor or the anchor signal sequence, control site occupancy and maturation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号