首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
Phosphatase and tensin homolog (PTEN) is an important tumor-suppressor gene which constitutes an important PI3K/Akt pathway by regulating the signaling of multiple biological processes, including apoptosis, metabolism, cell proliferation, and cell growth has been gaining increasing attention. However, the role of PTEN in regulating apoptosis of canine mammary tumors cells still needs further investigation. In this experiment, the effect of PTEN on proliferation and apoptosis in canine mammary tumors (CMT) cells was analyzed. As a result, gene and protein expression levels of apoptosis-related genes were detected. Eukaryotic expression vector pcDNA3.1+-PTEN were successfully constructed and stably transferred into canine CMT cells after geneticin (G418) selection. After pcDNA3.1+-PTEN transfection, compared with control group, the cells proliferation was inhibited and the cell apoptosis was increased in CMT cells. The expression of p-Akt was decreased and the apoptosis-related genes, such as caspase-3, caspase-9, and Bax, were increased. These data serve to demonstrate the function of PTEN on apoptosis and gene regulatory in PI3K/Akt pathway in CMT cells. Collectively, our data link the tumor-suppressor activities of PTEN to the machinery controlling cell cycle through the modulation of signaling molecules whose signal target is the functional inactivation of the apoptosis gene product.  相似文献   

2.
The inhibitor of growth 4 (ING4) is known as a tumor suppressor. The expressions of ING4 were markedly reduced in human renal clear cell carcinoma (ccRCC) tissues. However, the role of ING4 in renal cell carcinoma (RCC) remains unknown. The aim of the current study was to detect the ING4 expression level and its potential role in human RCC cell lines. Our results showed that ING4 was lowly expressed in human RCC cell lines compared with that in proximal tubular cell line. Ectopic overexpression of ING4 inhibited the proliferation, migration, and invasion properties, and as well as prevented epithelial-mesenchymal transition (EMT) phenotype of RCC cells. In addition, ING4 overexpression induced cell apoptosis and autophagy in RCC cells. Furthermore, ING4 overexpression suppressed the activation of PI3K/Akt pathway in RCC cells. The activator of PI3K/Akt, insulin-like growth factor 1, abolished the effects of ING4 on RCC cells. These findings indicated that ING4 presented anticancer activity in RCC cells. The effects of ING4 on RCC cells were mediated by regulating the PI3K/Akt pathway. These findings suggested that ING4 could be used for gene therapy of RCC.  相似文献   

3.
Regulation and function of PI 3K/Akt and mitogen-activated protein kinases (MAPKs) in doxorubicin-induced cell death were investigated in human lung adenocarcinoma cells. Doxorubicin induced dose-dependent apoptosis of human lung adenocarcinoma NCI-H522 cells. Prior to cell death, both Akt and the MAPK family members (MAPKs: ERK1/2, JNK, and p38) were activated in response to the drug treatment. The kinetics of the inductions for Akt and MAPKs are, however, distinct. The activation of Akt was rapid and transient, activated within 30 min of drug addition, then declined after 3 h, whereas the activations of three MAPKs occurred later, 4 h after addition of the drug and sustained until cell death occurred. Inhibition of PI 3K/Akt activation had no effect on MAPKs' activation, suggesting that the two pathways are independently activated in response to the drug treatment. Inhibition of PI 3K/Akt and p38 accelerated and enhanced doxorubicin-induced cell death. On the contrary, inhibition of ERK1/2 or JNK had no apparent effect on the cell death. Taken together, these results suggest that PI 3K/Akt and MAPKs signaling pathways are all activated, but with distinct mechanisms, in response to doxorubicin treatment. Activation of PI 3K/Akt and p38 modulates apoptotic signal pathways and inhibits doxorubicin-induced cell death. These responses of tumor cells to cancer drug treatment may contribute to their drug resistance. Understanding of the mechanism and function of the responses will be beneficial for the development of novel therapeutic approaches for improvement of drug efficacy and circumvention of drug resistance.  相似文献   

4.
Sevoflurane is a widely used anaesthetic agent, including in anaesthesia of children and infants. Recent studies indicated that the general anaesthesia might cause the cell apoptosis in the brain. This issue raises the concerns about the neuronal toxicity induced by the application of anaesthetic agents, especially in the infants and young children. In this study, we used Morris water maze, western blotting and immunohistochemistry to elucidate the role of α‐lipoic acid in the inhibition of neuronal apoptosis. We found that sevoflurane led to the long‐term cognitive impairment in the young rats. This adverse effect may be caused by the neuronal death in the hippocampal region, mediated through PI3K/Akt signalling pathway. We also showed that α‐lipoic acid offset the effect of sevoflurane on the neuronal apoptosis and cognitive dysfunction. This study elucidated the potential clinical role of α‐lipoic acid, providing a promising way in the prevention and treatment of long‐term cognitive impairment induced by sevoflurane general anesthesia. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Oral squamous cell carcinoma (OSCC) is a common cancer with poor prognosis and high mortality. The role of CCN5 has attracted a great focus on the regulation of cancer progression. However, the biological function and mechanism of CCN5 in OSCC are still not well elucidated. The current study was designed to determine the effects of CCN5 on OSCC cell proliferation and apoptosis using two OSCC cell lines. Further, LY294002, a PI3K/AKT antagonist, was employed to explore the mechanism underlying the effects of CCN5 in the regulation of OSCC. The results showed that overexpression of CCN5 in TSCCa cells significantly reduced viable cell number, arrested cell cycle, and suppressed cell‐cycle regulators (cyclin D1, cyclin E, and CDK2). CCN5 overexpression increased the apoptotic ratio and Hoechst‐positive cell number, and altered the apoptotic‐related proteins (caspase‐3/9, Bax, and Bcl‐2). However, CCN5 silencing induced opposite effects on cell proliferation and apoptosis in Tca‐8113 cells. In addition, we observed that CCN5 knockdown increased the expression levels of PI3K (p85α and p110α) and phosphorylated AKT at serine 473 (p‐AKT Ser473) in Tca‐8113 cells. Inhibiting PI3K/AKT signaling with LY294002 rescued the apoptotic process in CCN5‐silenced OSCC cells. Finally, xenograft analysis showed that CCN5 represses tumorigenesis of OSCC cells. These findings together suggest that CCN5 functions as a tumor suppressor for OSCC cell development through inactivation of PI3K/AKT signaling pathway, providing a potential candidate for OSCC therapy.  相似文献   

7.
Fucosyltransferase IV (FUT4) is an essential enzyme that catalyzes the synthesis of difucosylated oligosaccharide LeY which is overexpressed in the cancers derived from the epithelial tissues. Our previous studies have shown that FUT4 overexpression promotes A431 cell proliferation through the MAPK and PI3K/Akt signaling pathways, but the relationship between FUT4 and apoptosis remained unclear. Here, we investigated the effect of FUT4 overexpression on cyclophosphamide (CPA)-induced apoptosis in A431 cells. Western blot analysis showed that FUT4 overexpression decreased expression of Bax, Caspase 3, and PARP proteins, and increased anti-apoptotic Bcl-2 protein in A431 cells. The anti-apoptosis effect of FUT4 was confirmed both by Annexin-V/PI and JC-1 assays. The results showed that FUT4 overexpression up-regulated phosphorylation of ERK1/2 and Akt which was inhibited by CPA in dose-dependent manner. By blocking the ERK/MAPK and PI3K/Akt pathways with specific inhibitors, we demonstrated that these two pathways were required in mediating the anti-apoptosis effect of FUT4. We concluded that FUT4 inhibited cell apoptosis induced by CPA through decreasing the expression of apoptotic proteins Bax, Caspase 3, and PARP and increasing the expression of anti-apoptotic protein Bcl-2 via the ERK/MAPK and PI3K/Akt signaling pathways in A431 cells.  相似文献   

8.
Increasing evidence suggests that aberrant activation of PI3K/Akt is involved in many human cancers, and that inhibition of the PI3K/Akt pathway might be a promising strategy for cancer treatment. Our investigation indicates that Rhabdastrellic acid-A, an isomalabaricane triterpenoid isolated from the sponge, Rhabdastrella globostellata, inhibits proliferation of HL-60 cells with an IC(50) value of 0.68mug/ml, and induces apoptosis. Rhabdastrellic acid-A also induces cleavage of the death substrate poly (ADP-ribose) polymerase (PARP) and caspase-3. Pretreatment of HL-60 cells with the caspase-3 specific inhibitor, DEVD-CHO, prevents Rhabdastrellic acid-A-induced DNA fragmentation and PARP cleavage. Activated PI3K and Akt significantly decreases after treatment with Rhabdastrellic acid-A in HL-60 cells. Expression levels of protein bcl-2, bax remain unchanged in response to Rhabdastrellic acid-A treatment in HL-60 cells. These results suggest that Rhabdastrellic acid-A inhibits PI3K/Akt pathway and induces caspase-3 dependent-apoptosis in HL-60 human leukemia cells.  相似文献   

9.
Phosphoinositide 3'-kinases (PI3Ks) constitute a family of lipid kinases implicated in signal transduction through tyrosine kinase receptors and heterotrimeric G protein-linked receptors. PI3Ks are heterodimers made up of four different 110-kDa catalytic subunits (p110alpha, p110beta, p110gamma, and p110delta) and a smaller regulatory subunit. Despite a clear implication of PI3Ks in survival signaling, the contribution of the individual PI3K isoforms has not been elucidated. To address this issue, we generated Rat1 fibroblasts that co-express c-Myc and membrane targeted derivates of the different p110 isoforms. Here we present data for the first time showing that activation of PI3-kinase signaling through membrane localization of p110beta, p110gamma, and p110delta protects c-Myc overexpressing Rat1 fibroblasts from apoptosis caused by serum deprivation like it has been described for p110alpha. Expression of each p110 isoform reduces significantly caspase-3 like activity in this apoptosis model. Decreased caspase-3 activity correlates with the increase in Akt phosphorylation in cells that contain one of the myristoylated p110 isoforms. p110 isoform-mediated protection from cell death was abrogated upon expression of a kinase-negative version of Akt.  相似文献   

10.
Cholecystokinin (CCK) and its receptors are expressed in mammalian cardiomyocytes and are involved in cardiovascular system regulation; however, the exact effect and underlying mechanism of CCK in cardiomyocyte apoptosis remain to be elucidated. We examined whether sulfated CCK octapeptide (CCK-8) protects H9c2 cardiomyoblast cells against angiotensin II (Ang II)-induced apoptosis. The H9c2 cardiomyoblasts were subjected to Ang II with or without CCK-8 and the viability and apoptotic rate were detected using a Cell Counting Kit-8 assay, Hoechst 33342 staining, terminal deoxyribonucleotide transferase-mediated nick-end labeling assays, and flow cytometry. In addition, specific antiapoptotic mechanisms of CCK-8 were investigated using specific CCK1 (Devazepide) or CCK2 (L365260) receptor antagonists, or the PI3K inhibitor LY294002. The expression of CCK, CCK1 receptor, CCK2 receptor, Akt, p-Akt, Bad, p-Bad, Bax, Bcl-2, and caspase-3 were detected by Western blot analysis and real-time polymerase chain reaction. We found that CCK and its receptor messenger RNA (mRNA) and protein are expressed in H9c2 cardiomyoblasts. Ang II-induced increased levels of CCK mRNA and protein expression and decreased levels of CCK1 receptor protein and mRNA. Pretreatment of CCK-8 attenuated Ang II-induced cell toxicity and apoptosis. In addition, pretreatment of H9c2 cells with CCK-8 markedly induced expression of p-Akt, p-bad, and Bcl-2 and decreased the expression levels of Bax and caspase-3. The protective effects of CCK-8 were partly abolished by Devazepide or LY294002. Our results suggest that CCK-8 protects H9c2 cardiomyoblasts from Ang II-induced apoptosis partly via activation of the CCK1 receptor and the phosphatidyqinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway.  相似文献   

11.
Nicorandil exerts myocardial protection through its antihypoxia and antioxidant effects. Here, we investigated whether it plays an anti‐apoptotic role in diabetic cardiomyopathy. Sprague‐Dawley rats were fed with high‐fat diet; then single intraperitoneal injection of streptozotocin was performed. Rats with fasting blood glucose (FBG) higher than 11.1 mmol/L were selected as models. Eight weeks after the models were built, rats were treated with nicorandil (7.5 mg/kg day and 15 mg/kg day respectively) for 4 weeks. H9c2 cardiomyocytes were treated with nicorandil and then stimulated with high glucose (33.3 mmol/L). TUNEL assay and level of bcl‐2, bax and caspase‐3 were measured. 5‐HD was used to inhibit nicorandil. Also, PI3K inhibitor (Miltefosine) and mTOR inhibitor (rapamycin) were used to inhibit PI3K/Akt pathway. The results revealed that nicorandil (both 7.5 mg/kg day and 15mg/kg day) treatment can increase the level of NO in the serum and eNOS in the heart of diabetic rats compared with the untreated diabetic group. Nicorandil can also improve relieve cardiac dysfunction and reduce the level of apoptosis. In vitro experiments, nicorandil (100 µmol) can attenuate the level of apoptosis stimulated by high glucose significantly in H9C2 cardiomyocyte compared with the untreated group. The effect of nicorandil on apoptosis was blocked by 5‐HD, and it was accompanied with inhibition of the phosphorylation of PI3K, Akt, eNOS, and mTOR. After inhibition of PI3K/Akt pathway, the protective effect of nicorandil is restrained. These results verified that as a NO donor, nicorandil can also inhibit apoptosis in diabetic cardiomyopathy which is mediated by PI3K/Akt pathway.  相似文献   

12.
We observed that treatment of prostate cancer cells for 24 h with magnolol, a phenolic component extracted from the root and stem bark of the oriental herb Magnolia officinalis, induced apoptotic cell death in a dose‐ and time‐dependent manner. A sustained inhibition of the major survival signal, Akt, occurred in magnolol‐treated cells. Treatment of PC‐3 cells with an apoptosis‐inducing concentration of magnolol (60 µM) resulted in a rapid decrease in the level of phosphorylated Akt leading to inhibition of its kinase activity. Magnolol treatment (60 µM) also caused a decrease in Ser(136) phosphorylation of Bad (a proapoptotic protein), which is a downstream target of Akt. Protein interaction assay revealed that Bcl‐xL, an anti‐apoptotic protein, was associated with Bad during treatment with magnolol. We also observed that during treatment with magnolol, translocation of Bax to the mitochondrial membrane occurred and the translocation was accompanied by cytochrome c release, and cleavage of procaspase‐8, ‐9, ‐3, and poly(ADP‐ribose) polymerase (PARP). Similar results were observed in human colon cancer HCT116Bax+/? cell line, but not HCT116Bax?/? cell line. Interestingly, at similar concentrations (60 µM), magnolol treatment did not affect the viability of normal human prostate epithelial cell (PrEC) line. We also observed that apoptotic cell death by magnolol was associated with significant inhibition of pEGFR, pPI3K, and pAkt. These results suggest that one of the mechanisms of the apoptotic activity of magnolol involves its effect on epidermal growth factor receptor (EGFR)‐mediated signaling transduction pathways. J. Cell. Biochem. 106: 1113–1122, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
目的:研究体外大鼠骨髓间充质干细胞(Bone marrow-derived mesenchymal stem cells, BMSCs)在缺血缺氧条件下发生凋亡的作用机制。方法:采取大鼠骨髓,以密度梯度离心分离出单个核细胞(MNCs),于体外培养并由牛垂体提取物(PEX)诱导扩增传代培养出骨髓间充质干细胞(MSCs)。经形态学和流式细胞仪检测MSCs表面标志物鉴定后,骨髓间充质干细胞(BMSCs)在缺血缺氧条件下培养,通过Annexin V/PI双染细胞凋亡检测比较不同组别细胞的凋亡率和蛋白印迹法(western blot)来观察细胞中蛋白的变化。结果:①经形态学观察和流式细胞仪检测MSCs表面标志物鉴定,提示骨髓间充质干细胞培养成功。②对照组(无缺血缺氧)与缺血缺氧组比较,缺血缺氧组的凋亡率显著性增加,而通过磷酸化Akt的表达量显著性增加提示PI3K(Phosphoinositide-3kinase)/Akt(ProteinkinaseB,PKB)信号通路被激活(P〈0.05);同时缺血缺氧组与缺血缺氧+PI3K/Akt抑制剂(LY294002)组比较,缺血缺氧+PI3K/Akt抑制剂(LY294002)组的凋亡率显著降低,而通过磷酸化Akt的表达量显著减少提示PI3K/Akt信号通路被抑制(P〈0.05)。结论:PI3K/Akt信号通路对体外缺血缺氧条件下培养的骨髓间充质干细胞凋亡发生有关键性作用。  相似文献   

14.
Previous studies have shown that phosphatase and tensin homolog (PTEN) are key regulators of the development of many malignant tumors and other diseases. However, its regulatory effect on coronary heart disease (CHD) has rarely been reported. Therefore, the regulatory effect of PTEN on the survival and cell death of vascular smooth muscle cells (VSMCs) in CHD mice was elucidated in this study. It was found that the protein and messenger RNA expressions of PTEN in VSMCs of 10 CHD mice were lower than those of normal mice. Then PTEN was overexpressed in VSMCs. It was suggested that the upregulation of PTEN was not conducive to the proliferation and survival of VSMCs in the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assay. The flow cytometry (Annexin V-Fluorescein isothiocyanate (FITC)/propidium iodide) and the terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used to detect the apoptotic rate of overexpressing PTEN cells. Some data showed that the expression of PTEN could lead to increased apoptotic rate. It was shown that antiapoptotic Bcl-2 levels were decreased, but cleaved caspase-3 and proapoptotic Bax levels were promoted by SIRT6 overexpression in Western blot analysis. Moreover, PI3K/Akt expression and phosphorylation were significantly decreased in cells expressing PTEN. Recovery of PI3K expression inhibited the suppressive influence of PTEN on VSMC survival, as evidenced by the activated PI3K/Akt pathway, increased cell proliferative rate, reduced the apoptotic level, and reversed expression patterns of Bcl-2 and Bax. Therefore, the findings in this study provide a new idea on the occurrence and development mechanism of CHD and may promote the discovery of innovative therapies.  相似文献   

15.
Background: Triple-negative breast cancer (TNBC) is a refractory subtype of breast cancer, 25–30% of which have dysregulation in the PI3K/AKT pathway. The present study investigated the anticancer effect of erianin on TNBC cell line and its underlying mechanism.Methods: After treatment with erianin, MTT assay was employed to determine the MDA-MB-231 and EFM-192A cell proliferation, the nucleus morphological changes were observed by DAPI staining. The cell cycle and apoptotic proportion were detected by flow cytometry. Western blot was performed to determine the cell cycle and apoptosis-related protein expression and PI3K pathways. Finally, the antiproliferative activity of erianin was further confirmed by adding or not adding PI3K agonists SC79.Results: Erianin inhibited the proliferation of MDA-MB-231 and EFM-192A cells in a dose-dependent manner, the IC50 were 70.96 and 78.58 nM, respectively. Erianin could cause cell cycle arrest at the G2/M phase, and the expressions of p21 and p27 were up-regulated, while the expressions of CDK1 and Cyclin B1 were down-regulated. Erianin also induced apoptosis via the mitochondrial pathway, with the up-regulation of the expression of Cyto C, PARP, Bax, active form of Caspase-3, and Caspase-9. Furthermore, p-PI3K and p-Akt expression were down-regulated by erianin. After co-incubation with SC79, the cell inhibition rate of erianin was decreased, which further confirmed that the attenuated PI3K/Akt pathway was relevant to the pro-apoptotic effect of erianin.Conclusions: Erianin can inhibit the proliferation of TNBC cells and induce cell cycle arrest and apoptosis, which may ascribe to the abolish the activation of the PI3K/Akt pathway.  相似文献   

16.
17.
目的:研究体外大鼠骨髓间充质干细胞(Bone marrow-derived mesenchymal stem cells,BMSCs)在缺血缺氧条件下发生凋亡的作用机制。方法:采取大鼠骨髓,以密度梯度离心分离出单个核细胞(MNCs),于体外培养并由牛垂体提取物(PEX)诱导扩增传代培养出骨髓间充质干细胞(MSCs)。经形态学和流式细胞仪检测MSCs表面标志物鉴定后,骨髓间充质干细胞(BMSCs)在缺血缺氧条件下培养,通过Annexin V/PI双染细胞凋亡检测比较不同组别细胞的凋亡率和蛋白印迹法(western blot)来观察细胞中蛋白的变化。结果:①经形态学观察和流式细胞仪检测MSCs表面标志物鉴定,提示骨髓间充质干细胞培养成功。②对照组(无缺血缺氧)与缺血缺氧组比较,缺血缺氧组的凋亡率显著性增加,而通过磷酸化Akt的表达量显著性增加提示PI3K(Phosphoinosi-tide-3kinase)/Akt(ProteinkinaseB,PKB)信号通路被激活(P<0.05);同时缺血缺氧组与缺血缺氧+PI3K/Akt抑制剂(LY294002)组比较,缺血缺氧+PI3K/Akt抑制剂(LY294002)组的凋亡率显著降低,而通过磷酸化Akt的表达量显著减少提示PI3K/Akt信号通路被抑制(P<0.05)。结论:PI3K/Akt信号通路对体外缺血缺氧条件下培养的骨髓间充质干细胞凋亡发生有关键性作用。  相似文献   

18.
PI3K和Akt蛋白在异丙肾上腺素所致大鼠心肌肥厚中的表达   总被引:1,自引:0,他引:1  
目的研究异丙肾上腺素(ISO)致大鼠心肌肥厚中PI3K和Akt在心肌组织中的表达,为探讨心肌肥厚的信号转导机制和逆转心肌肥厚提供形态学资料.方法健康成年SD大鼠20只,随机分为实验组、对照组,每组10只.实验组给予异丙肾上腺素处理.1周后处死大鼠,取心肌组织,常规石蜡切片,HE染色,观察心肌组织的病理变化,测量心肌肥厚指标;免疫组织化学染色和免疫荧光染色,检测p-PI3K和p-Akt的表达及分布.结果实验组大鼠心肌肥厚指标与对照组相比均明显升高;免疫组织化学检测显示,实验组心肌组织p-PI3K和p-Akt蛋白表达面积和平均光密度较对照组高.免疫荧光检测实验组心肌组织p-PI3K和p-Akt蛋白表达较对照组高.结论小剂量持续给予 ISO 能建立大鼠心肌肥厚模型;p-PI3K和p-Akt蛋白表达均与心肌肥厚的发生和发展过程相关,PI3K/Akt信号通路激活,可能是导致心肌肥厚的机制之一.  相似文献   

19.
The caspase family of protease is speculated to have a crucial role in apoptosis. The effect of treatment with Idarubicin (IDA) and Medroxyprogesterone acetate (MPA), used alone or in combination, on the activation of Caspase-3 in canine Chronic Lymphatic Leukaemia (CLL) cells was investigated, in order to clarify the mechanism of chemo- and hormone-therapy mediated apoptosis. Caspase activity was determined by a quantitative fluorimetric assay. Apoptosis was monitored by propidium iodide (PI) and nucleosomes assay. Treatment of CLL cells for 24 h with MPA 5 microM did not significantly activate caspase-3 but its activity was increased almost 5-fold more with IDA 1 microM (P < 0.05) than control. Treatment of CLL cells with IDA 1 microM in equimolecular association with MPA was able to increase the activation of caspase-3 induced by IDA of the 61.2% (P < 0.05) in comparison with IDA alone. The activation of caspase-3 was confirmed evaluating apoptosis by PI and nucleosomes assay. Furthermore, both caspase-3 activation and apoptosis triggered by IDA alone or in combination with MPA were significantly inhibited by specific caspase-3 inhibitor AC-DEVD-CMK. These findings provide an explanation for IDA and MPA induced-apoptosis mechanism.  相似文献   

20.
Caspases and cancer   总被引:2,自引:0,他引:2  
Evasion of apoptosis is considered to be one of the hallmarks of human cancers. This cell death modality is executed by caspases and several upstream regulatory factors, which direct their proteolytic activity, have been defined as either tumor suppressors or oncogenes. Often these regulatory factors, in addition to being potent apoptosis inducers, function in cell survival or repair signaling pathways in response to cellular stress. Thus, loss of function in a distinct regulatory mechanism does not necessarily mean that tumor formation is due to apoptosis malfunction resulting from insufficient caspase activation. Although each caspase has been assigned a distinct role in apoptosis, some redundancy with respect to their regulatory functions and substrate recognition is evident. Jointly, these proteases could be considered to possess solid tumor suppressor function, but what is the evidence that deregulation of specific caspases per se induces inappropriate cell survival, leading to enhanced tumorigenic potential? This question will be addressed in this review, which covers basic molecular mechanisms derived from in vitro analyses and emphasizes new insights that have emerged from in vivo and clinical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号