首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Objective: Obesity is associated with lower rates of skeletal muscle fatty acid oxidation (FAO), which is linked to insulin resistance. FAO is reduced further in obese African‐American (AAW) vs. white women (CW) and may also be lower in lean AAW vs. CW. In lean CW, endurance exercise training (EET) elevates the oxidative capacity of skeletal muscle. Therefore, we determined whether EET would elevate skeletal muscle FAO similarly in AAW and CW with a lower lipid oxidative capacity. Research Methods and Procedures: In vitro rates of FAO were assessed in rectus abdominus muscle strips using [1‐14C] palmitate (Pal) from lean AAW [BMI = 24.2 ± 0.9 (standard error) kg/m2] and CW (23.6 ± 0.8 kg/m2) undergoing voluntary abdominal surgery. Lean AAW (22 ± 0.9 kg/m2) and CW (24 ± 0.8 kg/m2) and obese AAW (36 ± 1.2 kg/m2) and CW (40 ± 1.3 kg/m2) underwent 10 consecutive days of EET on a cycle ergometer (60 min/d, 75% peak oxygen uptake). FAO was measured in vastus lateralis homogenates as captured 14CO2 using [1‐14C] Pal, palmitoyl‐CoA (Pal‐CoA), and palmityl‐carnitine (Pal‐Car). Results: Muscle strip experiments showed suppressed rates of FAO (p = 0.03) in lean AAW vs. CW. EET increased the rates of skeletal muscle Pal oxidation (p = 0.05) in both lean AAW and CW. In obese subjects, Pre‐EET Pal (but not Pal‐CoA or Pal‐Car) oxidation was lower (p = 0.05) in AAW vs. CW. EET increased Pal oxidation 100% in obese AAW (p < 0.05) and 59% (p < 0.05) in obese CW. Similar increases (p < 0.05) in post‐EET FAO were observed for Pal‐CoA and Pal‐Car in both groups. Discussion: Both lean and obese AAW possess a lower capacity for skeletal muscle FAO, but EET increases FAO similarly in both AAW and CW. These data suggest the use of EET for treatment against obesity and diabetes for both AAW and CW.  相似文献   

2.
    
The aliphatic waxes sealing plant surfaces against environmental stress are generated by fatty acid elongase complexes, each containing a β‐ketoacyl‐CoA synthase (KCS) enzyme that catalyses a crucial condensation forming a new C─C bond to extend the carbon backbone. The relatively high abundance of C35 and C37 alkanes derived from C36 and C38 acyl‐CoAs in Arabidopsis leaf trichomes (relative to other epidermis cells) suggests differences in the elongation machineries of different epidermis cell types, possibly involving KCS16, a condensing enzyme expressed preferentially in trichomes. Here, KCS16 was found expressed primarily in Arabidopsis rosette leaves, flowers and siliques, and the corresponding protein was localized to the endoplasmic reticulum. The cuticular waxes on young leaves and isolated leaf trichomes of ksc16 loss‐of‐function mutants were depleted of C35 and C37 alkanes and alkenes, whereas expression of Arabidopsis KCS16 in yeast and ectopic overexpression in Arabidopsis resulted in accumulation of C36 and C38 fatty acid products. Taken together, our results show that KCS16 is the sole enzyme catalysing the elongation of C34 to C38 acyl‐CoAs in Arabidopsis leaf trichomes and that it contributes to the formation of extra‐long compounds in adjacent pavement cells.  相似文献   

3.
脂酰辅酶A还原酶(FAR)可将脂酰辅酶A还原为相应的脂肪醇,在白蜡生物合成中起至关重要的作用。本研究通过cDNA末端快速扩增技术获得白蜡虫Ericerus pela far3基因cDNA全长,其开放阅读框(ORF)1 566 bp。对白蜡虫FAR3编码蛋白进行系统发育分析,发现FAR3与人类Homo sapiens、小鼠Mus musculus、黑腹果蝇Drosophila melanogaster等物种的FAR聚为一支;成功构建pET-30a eGFP/EpelFAR3原核表达质粒,转入大肠杆菌Escherichia coli BL21感受态细胞,在浓度为0.05 mmol·L-1的异丙基硫代半乳糖苷诱导6 h后有较高的蛋白表达量;经Western blot验证,表达蛋白分子量与预估蛋白分子量符合;质谱分析蛋白质分值为3 900,肽段覆盖度74%,所得肽段与理论序列相符;利用底物C24脂酰辅酶A、C26脂酰辅酶A、C28脂酰辅酶A和C30脂酰辅酶A对原核表达蛋白进行活性分析,利用气相色谱进行蛋白活性验证,没有理论产物相应脂肪醇的生成。本研究中白蜡虫far3 cDNA ORF的获得及原核表达的实现,为进一步的功能和组织表达定位研究奠定了基础。  相似文献   

4.
    
The flavoenzyme acyl‐CoA oxidase (ACX) catalyzes the first committed step in β‐oxidation and is required for the biosynthesis of jasmonic acid, a signaling molecule involved in plant defense. Recently, a mutant in tomato was identified that is deficient in jasmonic acid production and compromised in its wound response. This results from a single point mutation in acx1, which causes the conserved residue Thr138 to be substituted by isoleucine. To understand the structural basis for this mutation, the crystal structure of LeACX1 was determined to 2.74 Å resolution by molecular replacement. Unexpectedly, an unusual packing arrangement was observed in which three monomers of LeACX1 are present in the asymmetric unit. Although the tertiary structure of LeACX1 is essentially similar to the previously determined structures of ACX enzymes, the packing within the unit cells is distinctly different.  相似文献   

5.
    
The enoyl‐acyl carrier protein (ACP) reductase from Streptococcus pneumoniae (FabK; EC 1.3.1.9) is responsible for catalyzing the final step in each elongation cycle of fatty‐acid biosynthesis. Selenomethionine‐substituted FabK was purified and crystallized by the hanging‐drop vapour‐diffusion method at 277 K. The crystal belongs to space group P21, with unit‐cell parameters a = 50.26, b = 126.70, c = 53.63 Å, β = 112.46°. Diffraction data were collected to 2.00 Å resolution using synchrotron beamline BL32B2 at SPring‐8. Two molecules were estimated to be present in the asymmetric unit, with a solvent content of 45.1%.  相似文献   

6.
    
Lysophospholipid acyltransferases (LPATs) incorporate fatty acyl chains into phospholipids via a CoA-dependent mechanism and are important in remodeling phospholipids to generate the molecular species of phospholipids found in cells. These enzymes use one lysophospholipid and one acyl-CoA ester as substrates. Traditional enzyme activity assays engage a single substrate pair, whereas in vivo multiple molecular species exist. We describe here an alternative biochemical assay that provides a mixture of substrates presented to the microsomal extracts. Microsomal preparations from RAW 264.7 cells were used to compare traditional LPAT assays with data obtained using a dual substrate choice assay using six different lysophospholipids and eight different acyl-CoA esters. The complex mixture of newly synthesized phospholipid products was analyzed using LC-MS/MS. Both types of assays provided similar results, but the dual choice assay provided information about multiple fatty acyl chain incorporation into various phospholipid classes in a single reaction. Engineered suppression of LPCAT3 activity in RAW 264.7 cells was easily detected by the dual choice method. These findings demonstrate that this assay is both specific and sensitive and that it provides much richer biochemical detail than traditional assays.  相似文献   

7.
    
Anatoxin‐a and homoanatoxin‐a are two potent cyanobacterial neurotoxins biosynthesized from L‐proline by a short pathway involving polyketide synthases. Proline is first loaded onto AnaD, an acyl carrier protein, and prolyl‐AnaD is then oxidized to 1‐pyrroline‐5‐carboxyl‐AnaD by a flavoprotein, AnaB. Three polyketide synthases then transform this imine into anatoxin‐a or homoanatoxin‐a. AnaB was crystallized in its holo form and its three‐dimensional structure was determined by X‐ray diffraction at 2.8 Å resolution. AnaB is a homotetramer and its fold is very similar to that of the acyl‐CoA dehydrogenases (ACADs). The active‐site base of AnaB, Glu244, superimposed very well with that of human isovaleryl‐CoA dehydrogenase, confirming previous site‐directed mutagenesis experiments and mechanistic proposals. The substrate‐binding site of AnaB is small and is likely to be fitted for the pyrrolidine ring of proline. However, in contrast to ACADs, which use an electron‐transport protein, AnaB uses molecular oxygen as the electron acceptor, as in acyl‐CoA oxidases. Calculation of the solvent‐accessible surface area around the FAD in AnaB and in several homologues showed that it is significantly larger in AnaB than in its homologues. A protonated histidine near the FAD in AnaB is likely to participate in oxygen activation. Furthermore, an array of water molecules detected in the AnaB structure suggests a possible path for molecular oxygen towards FAD. This is consistent with AnaB being an oxidase rather than a dehydrogenase. The structure of AnaB is the first to be described for a prolyl‐ACP oxidase and it will contribute to defining the structural basis responsible for oxygen reactivity in flavoenzymes.  相似文献   

8.
The microbial biosynthesis of free fatty acid, which can be used as precursors for the production of fuels or chemicals from renewable carbon sources, has attracted significant attention in recent years. Free fatty acids can be produced by introducing an acyl-carrier protein (ACP) thioesterase (TE) gene into Escherichia coli. The first committed step of fatty acid biosynthesis is the conversion of acetyl-CoA to malonyl-CoA by an adenosine triphosphate (ATP)-dependent acetyl-CoA carboxylase followed by the conversion of malonyl-CoA to malonyl-ACP through the enzyme malonyl CoA-acyl carrier protein transacylase (MCT; FabD). The E. coli fabD gene encoding MCT has been cloned and studied. However, the effect of FabD overexpression in a fatty acid overproducing strain has not been examined. In this study, we examined the effect of FabD overexpression in a fatty acid overproducing strain carrying an acyl-ACP TE. Specifically, the effect of overexpressing a fabD gene from four different organisms on fatty acid production was compared. The strains carrying a fabD gene from E. coli, Streptomyces avermitilis MA-4680, or Streptomyces coelicolor A3(2) improved the free fatty acid production; these three strains produced more free fatty acids, about 11% more, than the control strain. The strain carrying a fabD gene from Clostridium acetobutylicum ATCC 824, however, produced similar quantities of free fatty acids as the control strain. In addition, the three FabD overexpressed strains also have higher fatty acid/glucose yields. The results suggested that FabD overexpression can be used to improve free fatty acid production by increasing the malonyl-ACP availability.  相似文献   

9.
    
Acyl‐CoA‐binding protein (ACBP) is a ubiquitously expressed protein that binds intracellular acyl‐CoA esters. Several studies have suggested that ACBP acts as an acyl‐CoA pool former and regulates long‐chain fatty acids (LCFA) metabolism in peripheral tissues. In the brain, ACBP is known as Diazepam‐Binding Inhibitor, a secreted peptide acting as an allosteric modulator of the GABAA receptor. However, its role in central LCFA metabolism remains unknown. In the present study, we investigated ACBP cellular expression, ACBP regulation of LCFA intracellular metabolism, FA profile, and FA metabolism‐related gene expression using ACBP‐deficient and control mice. ACBP was mainly found in astrocytes with high expression levels in the mediobasal hypothalamus. We demonstrate that ACBP deficiency alters the central LCFA‐CoA profile and impairs unsaturated (oleate, linolenate) but not saturated (palmitate, stearate) LCFA metabolic fluxes in hypothalamic slices and astrocyte cultures. In addition, lack of ACBP differently affects the expression of genes involved in FA metabolism in cortical versus hypothalamic astrocytes. Finally, ACBP deficiency increases FA content and impairs their release in response to palmitate in hypothalamic astrocytes. Collectively, these findings reveal for the first time that central ACBP acts as a regulator of LCFA intracellular metabolism in astrocytes.

  相似文献   


10.
    
A recombinant form of the flavoenzyme acyl‐CoA oxidase from rat liver has been crystallized by the hanging‐drop vapour‐diffusion technique using PEG 20 000 as a precipitating agent. The crystals grew as yellow prisms, with unit‐cell parameters a = 71.05, b = 87.29, c = 213.05 Å, α = β = γ = 90°. The crystals exhibit the symmetry of space group P212121 and are most likely to contain a dimer in the asymmetric unit, with a VM value of 2.21 Å3 Da−1. The crystals diffract to a resolution of 2.5 Å at beamline BL6A of the Photon Factory. Two heavy‐atom derivatives have been identified.  相似文献   

11.
  总被引:9,自引:0,他引:9  
We report a novel, highly sensitive and selective method for the extraction and quantification of acyl CoA esters from plant tissues. The method detects acyl CoA esters with acyl chain lengths from C4 to C20 down to concentrations as low as 6 fmol in extracts. Acyl CoA esters from standard solutions or plant extracts were derived to their fluorescent acyl etheno CoA esters in the presence of chloroacetaldehyde, separated by ion-paired reversed-phase high-performance liquid chromatography, and detected fluorometrically. This derivitization procedure circumvents the selectivity problems associated with previously published enzymatic methods, and methods that rely on acyl chain or thiol group modification for acyl CoA ester detection. The formation of acyl etheno CoA esters was verified by mass spectrometry, which was also used to identify unknown peaks from chromatograms of plant extracts. Using this method, we report the composition and concentration of the acyl CoA pool during lipid synthesis in maturing Brassica napus seeds and during storage lipid breakdown in 2-day-old Arabidopsis thaliana seedlings. The concentrations measured were in the 3--6 microM range for both tissue types. We also demonstrate the utility of acyl CoA profiling in a transgenic B. napus line that has high levels of lauric acid. To our knowledge, this is the first time that reliable estimates of acyl CoA ester concentrations have been made for higher plants, and the ability to profile these metabolites provides a valuable new tool for the investigation of gene function.  相似文献   

12.
白蜡虫及其寄主植物游离氨基酸的研究   总被引:2,自引:0,他引:2  
作者研究了白蜡虫越冬前后体内游离氨基酸的组成及变化 ,并通过对虫体、蜜露及被寄生植物游离氨基酸含量及百分率组成进行对比分析 ,探讨了白蜡虫对游离氨基酸的利用问题。虫体含量较高的氨基酸有丙氨酸、谷氨酸、苏氨酸、丝氨酸、缬氨酸。大部分氨基酸及其总量在越冬期下降 ,越冬以后升高 ,逐渐超过越冬前水平。虫体大量吸收的氨基酸是丙氨酸 ,利用较少的氨基酸是天门冬氨酸 ,其它氨基酸或多或少地为白蜡虫所利用。  相似文献   

13.
    
The control of pheromone biosynthesis by the neuropeptide PBAN was investigated in the moth Heliothis virescens. When decapitated females were injected with [2-(14)C] acetate, females co-injected with PBAN produced significantly greater quantities of radiolabeled fatty acids in their pheromone gland than females co-injected with saline. This indicates that PBAN controls an enzyme involved in the synthesis of fatty acids, probably acetyl CoA carboxylase. Decapitated females injected with PBAN showed a rapid increase in native pheromone, and a slower increase in the pheromone precursor, (Z)-11-hexadecenoate. Total native palmitate and stearate (both pheromone intermediates) showed a significant decrease after PBAN injection, before their titers were later restored to initial levels. In contrast, the acyl-CoA thioesters of these two saturated fatty acids increased during the period when their total titers decreased. When a mixture of labeled palmitic and heptadecanoic (an acid that cannot be converted to pheromone) acids was applied to the gland, PBAN-injected females produced greater quantities of labeled pheromone and precursor than did saline-injected ones. The two acids showed similar time-course patterns, with no difference in total titers of each of the respective acids between saline- and PBAN-injected females. When labeled heptadecanoic acid was applied to the gland alone, there was no difference in titers of either total heptadecanoate or of heptadecanoyl-CoA between PBAN- and saline-injected females, suggesting that PBAN does not directly control the storage or liberation of fatty acids in the gland, at least for this fatty acid. Overall, these data indicate that PBAN also controls a later step involved in pheromone biosynthesis, perhaps the reduction of acyl-CoA moieties. The control by PBAN of two enzymes, near the beginning and end of the pheromone biosynthetic process, would seem to allow for more efficient utilization of fatty acids and pheromone than control of only one enzyme.  相似文献   

14.
  总被引:1,自引:0,他引:1  
In order to investigate the effects of high-fat diets rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), Wistar rats bearing subcutaneous implants of the Walker 256 tumour were fed pelleted chow containing low DHA/EPA or high DHA/EPA. The presence of n-3 polyunsaturated fatty acids (PUFAs) led to a marked suppression (35-46%) of tumour growth over a 12 day period. Both the whole tumour homogenate and the Percoll-purified mitochondrial fraction presented significant changes in fatty acid composition. The levels of EPA increased in both n-3 dietary groups while the levels of DHA increased only in the high DHA/EPA group, in comparison with the control chow-fed group. The presence of n-3 PUFAs led to an increase in mitochondrial acyl CoA synthetase activity, but neither the cytoplasmic acyl CoA content nor the n-3 fatty acid composition of the cytoplasmic acyl CoAs was altered by the diet. The content of thiobarbituric acid-reactive substances (TBARS) was increased in the low DHA/EPA group but was unchanged in the high DHA/EPA group. In vitro studies with the Walker 256 cell line showed a 46% decrease in cell growth in the presence of either EPA or DHA which was accompanied by a large decrease in the measured mitochondrial membrane potential. The TBARS content was increased only in the EPA-exposed cells. Cell cycle analysis identified a decrease in G0-G1 phase cells and an increase in G2-M phase cells and apoptotic cells, for both EPA and DHA-exposed cells. The data show that the presence of n-3 PUFAs in the diet is able to significantly after the growth rate of the Walker 256 tumour. The involvement of changes in mitochondrial membrane composition and membrane potential have been indicated for both EPA and DHA, while changes in lipid peroxidation have been identified in the presence of EPA but not of DHA.  相似文献   

15.
白蜡虫碱性磷酸酶功能基团的研究   总被引:9,自引:2,他引:9  
白蜡ricerus pela雌成虫经匀浆,正丁醇抽提,硫酸铵分段盐析,SephadexG-150凝胶过滤等步骤,得到比活力为136.65U/mg蛋白酶制品,用苯甲基磺酰氟、N-溴代琥珀酰亚胺、三硝基苯磺酸、二巯基苏糖醇、对氯汞苯甲酸、琥珀酸酐、溴乙酸、碘乙酸等化学修饰剂在一定条件下选择修饰白蜡虫碱性磷酸酶的几种氨基酸残基,并测定酶活力变化。结果表明:苯甲基磺酰氟、N-溴代琥珀酰亚胺、三硝基苯磺酸、琥珀酸酐、二巯基苏糖醇的修饰能显著抑制酶的活力,活力的降低与修饰剂的浓度有关,氯汞苯甲酸、溴乙酸、碘乙酸的修饰对酶的抑制作用影响较小。初步认为:丝氨酸、赖氨酸和色氨酸残基是白蜡虫碱性磷酸酶的必需功能基团,部分二硫键也是酶的催化功能所必需的。  相似文献   

16.
    
The feeding of high-fat diets rich in polyunsaturated fatty acids (PUFAs) caused a marked increase in the acyl CoA thioesterase activity of the Walker 256 tumour. Diets containing lower levels of PUFAs did not alter the activity of acyl CoA thioesterase and the exposure of LLC-WRC256 tumour cells, in culture, to PUFAs (150 microM) also was ineffective in altering activity. The tumours from n-3 PUFA-rich and control diets were analysed by transmission electron microscopy in order to compare peroxisomal content. The presence of PUFAs led to an almost 10-fold increase in the number of peroxisomes present in the tumour tissue. A common feature of the PUFA-treated tumour was the presence of many cells containing highly condensed heterochromatin at the periphery of the nucleus, indicative of apoptosis. The sparsity of endoplasmic reticulum and the lack of detection of mitochondrial acyl CoA thioesterase, MTE-I, led to the conclusion that the increase in tumour acyl CoA thioesterase activity may be due to an increase in the activity of the peroxisomal enzyme.  相似文献   

17.
白蜡虫雌成虫某些生化成分分析   总被引:2,自引:0,他引:2  
赵欣平  刘克武  贾捷  喻东 《昆虫知识》2001,38(3):216-218
分析了白蜡虫雌成虫含氮 6.3 3 4 %、蛋白质 3 9.59% (含非蛋白氮 )、脂肪 6.2 556% ,其碘价68.877。白蜡虫乙醇提取液含氮 0 .2 60 %、蛋白质 0 .656%、还原糖 3 3 %、总糖 7 0 0 % ,测定出含有 1 7种氨基酸 ,其中以His、Glu、Ala含量较高。测定了Ca、Fe、Mg、Al、Ba、Co、Mn、Sr、Zn、P元素的含量 ,其中Ca、Mg、P含量较高。微量元素较为丰富  相似文献   

18.
19.
    
Mycobacterium tuberculosis (Mtb) acyl‐CoA carboxylase is involved in the biosynthesis of mycolic acids, which are a key component of the bacillus cell wall. The Mtb genome encodes six acyl‐CoA carboxylase β subunits (ACCD1–6), three of which (ACCD4–6) are essential for survival of the pathogen on minimal medium. Mtb ACCD6 has been expressed, purified and crystallized. The two forms of Mtb ACCD6 crystals belonged to space groups P41212 and P212121 and diffracted to 2.9 and 2.5 Å resolution, respectively, at a synchrotron‐radiation source.  相似文献   

20.
    
4‐Hydroxybenzoyl‐CoA reductase (4‐HBCR) is a central enzyme in the metabolism of phenolic compounds in anaerobic bacteria. The enzyme catalyzes the reductive removal of the phenolic hydroxyl group from 4‐hydroxybenzoyl‐CoA, yielding benzoyl‐CoA and water. 4‐HBCR belongs to the xanthine oxidase (XO) family of molybdenum enzymes which occur as heterodimers, (αβγ)2. 4‐HBCR contains two molybdopterins, four [2Fe–2S] and two [4Fe–4S] clusters and two FADs. A low‐potential Allochromatium vinosum‐type ferredoxin containing two [4Fe‐4S] clusters serves as an in vivo electron donor for 4‐HBCR. In this work, the oxygen‐sensitive proteins 4‐HBCR and the ferredoxin (TaFd) from Thauera aromatica were crystallized under anaerobic conditions. 4‐HBCR crystallized with PEG 4000 and MPD as precipitant diffracted to about 1.6 Å resolution and the crystals were highly suitable for X‐ray structure analysis. Crystals of TaFd were obtained with (NH4)3PO4 as precipitant and revealed a solvent content of 77%, which is remarkably high for a small soluble protein. The structure of TaFd was solved at 2.9 Å resolution by the molecular‐replacement method using the highly related structure of the ferredoxin (CvFd) from A. vinosum as a model. Structural changes between the two ferredoxins around the [4Fe–4S] cluster can be correlated with their different redox potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号