首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aim To document the geographical structure of the historical signal in the continental species richness gradient of birds and evaluate the influences of contemporary and historical climatic conditions on the generation and maintenance of the richness pattern. Location Australia. Methods We used range maps of breeding birds to generate the spatial pattern of species richness at four grain sizes, and two molecular phylogenies to measure the level of evolutionary development of avifaunas at each grain size. We then used simple correlation and path analysis to generate a statistical model of species richness using environmental predictor variables and compared the spatial patterns of richness and mean evolutionary development to identify possible environmental links between richness and net diversification rates across the continent. Results The contemporary richness pattern is well explained statistically by actual evapotranspiration (a measure of water–energy balance), operating both directly and indirectly through plant production, and this is robust to the spatial resolution of the analysis. Further, species richness and the mean level of evolutionary development of faunas show a strong spatial correspondence, such that dry areas support both fewer species and species from more highly derived families, whereas wet areas support more species of both basal and derived families. The evolutionary pattern conforms to a similar pattern known for plants and is probably explained by the increase in aridity in western and central Australia arising in the Miocene. Main conclusion The contemporary bird richness gradient contains a historical signal and reflects the effects of both current levels of water availability as well as changes in rainfall patterns extending over evolutionary time. The historical signal persists even in the absence of obvious hard barriers to dispersal.  相似文献   

2.
Broad‐scale variation in taxonomic richness is strongly correlated with climate. Many mechanisms have been hypothesized to explain these patterns; however, testable predictions that would distinguish among them have rarely been derived. Here, we examine several prominent hypotheses for climate–richness relationships, deriving and testing predictions based on their hypothesized mechanisms. The ‘energy–richness hypothesis’ (also called the ‘more individuals hypothesis’) postulates that more productive areas have more individuals and therefore more species. More productive areas do often have more species, but extant data are not consistent with the expected causal relationship from energy to numbers of individuals to numbers of species. We reject the energy–richness hypothesis in its standard form and consider some proposed modifications. The ‘physiological tolerance hypothesis’ postulates that richness varies according to the tolerances of individual species for different sets of climatic conditions. This hypothesis predicts that more combinations of physiological parameters can survive under warm and wet than cold or dry conditions. Data are qualitatively consistent with this prediction, but are inconsistent with the prediction that species should fill climatically suitable areas. Finally, the ‘speciation rate hypothesis’ postulates that speciation rates should vary with climate, due either to faster evolutionary rates or stronger biotic interactions increasing the opportunity for evolutionary diversification in some regions. The biotic interactions mechanism also has the potential to amplify shallower, underlying gradients in richness. Tests of speciation rate hypotheses are few (to date), and their results are mixed.  相似文献   

3.
The latitudinal diversity gradient (LDG) is one of the most striking and consistent biodiversity patterns across taxonomic groups. We investigate the species richness gradient in the buckwheat family, Polygonaceae, which exhibits a reverse LDG and is, thus, decoupled from dominant gradients of energy and environmental stability that increase toward the tropics and confound mechanistic interpretations. We test competing age and evolutionary diversification hypotheses, which may explain the diversification of this plant family over the past 70 million years. Our analyses show that the age hypothesis, which posits that clade richness is positively correlated with the ecological and evolutionary time since clade origin, fails to explain the richness gradient observed in Polygonaceae. However, an evolutionary diversification hypothesis is highly supported, with diversification rates being 3.5 times higher in temperate clades compared to tropical clades. We demonstrate that differences in rates of speciation, migration, and molecular evolution insufficiently explain the observed patterns of differential diversification rates. We suggest that reduced extinction rates in temperate clades may be associated with adaptive responses to selection, through which seed morphology and climatic tolerances potentially act to minimize risk in temporally variable environments. Further study is needed to understand causal pathways among these traits and factors correlated with latitude.  相似文献   

4.
Rates of biological diversification should ultimately correspond to rates of genome evolution. Recent studies have compared diversification rates with phylogenetic branch lengths, but incomplete phylogenies hamper such analyses for many taxa. Herein, we use pairwise comparisons of confamilial sauropsid (bird and reptile) mitochondrial DNA (mtDNA) genome sequences to estimate substitution rates. These molecular evolutionary rates are considered in light of the age and species richness of each taxonomic family, using a random-walk speciation–extinction process to estimate rates of diversification. We find the molecular clock ticks at disparate rates in different families and at different genes. For example, evolutionary rates are relatively fast in snakes and lizards, intermediate in crocodilians and slow in turtles and birds. There was also rate variation across genes, where non-synonymous substitution rates were fastest at ATP8 and slowest at CO3. Family-by-gene interactions were significant, indicating that local clocks vary substantially among sauropsids. Most importantly, we find evidence that mitochondrial genome evolutionary rates are positively correlated with speciation rates and with contemporary species richness. Nuclear sequences are poorly represented among reptiles, but the correlation between rates of molecular evolution and species diversification also extends to 18 avian nuclear genes we tested. Thus, the nuclear data buttress our mtDNA findings.  相似文献   

5.
Differences in species richness at different elevations are widespread and important for conservation, but the causes of these patterns remain poorly understood. Here, we use a phylogenetic perspective to address the evolutionary and biogeographic processes that underlie elevational diversity patterns within a region. We focus on a diverse but well-studied fauna of tropical amphibians, the hylid frogs of Middle America. Middle American treefrogs show a "hump-shaped" pattern of species richness (common in many organisms and regions), with the highest regional diversity at intermediate elevations. We reconstructed phylogenetic relationships among 138 species by combining new and published sequence data from 10 genes and then used this phylogeny to infer evolutionary rates and patterns. The high species richness of intermediate elevations seems to result from two factors. First, a tendency for montane clades to have higher rates of diversification. Second, the early colonization of montane regions, leaving less time for speciation to build up species richness in lowland regions (including tropical rainforests) that have been colonized more recently. This "time-for-speciation" effect may explain many diversity patterns and has important implications for conservation. The results also imply that local-scale environmental factors alone may be insufficient to explain the high species richness of lowland tropical rainforests, and that diversification rates are lower in earth's most species-rich biome.  相似文献   

6.
Aim  We studied elevational species richness patterns of Schizothorax fishes and identified the roles of ecological and evolutionary factors in shaping the patterns of elevational diversity.
Location  The Tibetan Plateau and its adjacent regions.
Methods  We assembled distribution and altitude data for all Schizothorax species using the literature. We merged ecological and evolutionary approaches to test the relationships between species richness and ecological factors (climate, area, the mid-domain effect) or evolutionary factors (diversification rates and time of colonization).
Results  We found that species richness of Schizothorax fishes peaked at mid-elevations. Rainfall, area, the mid-domain effect and diversification rate were weak predictors of the richness pattern. Temperature showed a nonlinear relationship with species richness. Temperature and time of colonization were the most important variables in explaining the elevational diversity pattern.
Main conclusion  Our findings indicate that the time-for-speciation effect and niche conservatism play important roles in variation of species richness.  相似文献   

7.
Aim Richness gradients are frequently correlated with environmental characteristics at broad geographic scales. In particular, richness is often associated with energy and climate, while environmental heterogeneity is rarely its best correlate. These correlations have been interpreted as evidence in favour of environmental determinants of diversity gradients, particularly energy and climate. This interpretation assumes that the expected‐by‐random correlation between richness and environment is zero, and that this is equally true for all environmental characteristics. However, these expectations might be unrealistic. We investigated to what degree basic evolutionary/biogeographical processes occurring independently of environment could lead to richness gradients that correlate with environmental characteristics by chance alone. Location Africa, Australia, Eurasia and the New World. Methods We produced artificial richness gradients based on a stochastic simulation model of geographic diversification of clades. In these simulations, species speciate, go extinct and expand or shift their distributions independently of any environmental characteristic. One thousand two hundred repetitions of this model were run, and the resulting stochastic richness gradients were regressed against real‐world environmental variables. Stochastic species–environment relationships were then compared among continents and among three environmental characteristics: energy, environmental heterogeneity and climate seasonality. Results Simulations suggested that a significant degree of correlation between richness gradients and environment is expected even when clades diversify and species distribute stochastically. These correlations vary considerably in strength; but in the best cases, environment can spuriously account for almost 80% of variation in stochastic richness. Additionally, expected‐by‐chance relationships were different among continents and environmental characteristics, producing stronger spurious relationships with energy and climate than with heterogeneity. Main conclusions We conclude that some features of empirical species–environment relationships can be reproduced just by chance when taking into account evolutionary/biogeographical processes underlying the construction of species richness gradients. Future tests of environmental effects on richness should consider structure in richness–environment correlations that can be produced by simple evolutionary null models. Research should move away from the naive non‐biological null hypotheses that are implicit in traditional statistical tests.  相似文献   

8.
One of the most pervasive patterns observed in biodiversity studies is the tendency for species richness to decline towards the poles. One possible explanation is that high levels of environmental energy promote higher species richness nearer the equator. Energy input may set a limit to the number of species that can coexist in an area or alternatively may influence evolutionary rates. Within flowering plants (angiosperms), families exposed to a high energy load tend to be both more species rich and possess faster evolutionary rates, although there is no evidence that one drives the other. Specific environmental effects are likely to vary among lineages, reflecting the interaction between biological traits and environmental conditions in which they are found. One example of this is demonstrated by the high species richness of the iris family (Iridaceae) in the Cape of South Africa, a likely product of biological traits associated with reproductive isolation and the steep ecological and climatic gradients of the region. Within any set of conditions some lineages will tend to be favoured over others; however, the identity of these lineages will fluctuate with a changing environment, explaining the highly labile nature of diversification rates observed among major lineages of flowering plants.  相似文献   

9.
Aim To understand the ecological and historical/evolutionary processes underlying an inverse latitudinal gradient of richness (LGR) using crustacean peracarid species as a model group. Location The Pacific coast of South America, along the Chilean coast between 18° S and 56° S. Methods The LGR was evaluated using a dataset including 320 marine peracarid species reported for the coasts of Chile. Five ecological hypotheses invoking a relationship between species richness and present‐day conditions were tested: species–energy, species–area, Rapoport rescue effect, mid‐domain geometric constraint and niche breadth. Historical/evolutionary hypotheses (i.e. biogeographic conservatism, and diversification rates) were indirectly tested by analysing the latitudinal variation in the taxonomic distinctness, the taxonomic conservatism of the midpoint of the latitudinal range and the degree of nestedness at different taxonomic levels. Results Richness increased poleward, varying approximately eightfold, following an inverse LGR coupled with an increase in bathymetric distribution. Overall this inverse LGR seems robust to uncertainties in the completeness of the species inventory. We found support for only two of the five ecological hypotheses tested: species–area and Rapoport rescue effect. Historical/evolutionary hypotheses seemed important in structuring the richness pattern, as indicated by the higher taxonomic distinctness in the southern region, the strong taxonomic inertia in the mean range size and the high degree of nestedness of assemblages at different taxonomic levels. Conclusions When combined, these results underscore the importance of long‐term processes and historical/evolutionary explanations for the inverse LGR, conceptualized in what we term the ‘out of the deep south’ hypothesis that involves the effects of both biogeographic niche conservatism and evolutionary rates. We propose that the southern region may be a source of evolutionary novelties and/or exhibit higher diversification rates (i.e. higher speciation/lower extinction rates). Furthermore, phylogenetic conservatism of latitudinal range may limit the geographic expansion of these new taxa towards the depauperated northern region.  相似文献   

10.
In recent decades, the field of historical biogeography has become increasingly divorced from evolutionary biology, ecology, and studies of species richness. In this paper, we explore the evolutionary causes of patterns of biogeography and species richness in Northern Hemisphere treefrogs, combining phylogenetics, ancestral area reconstruction, molecular dating methods, and ecological niche modeling. We reconstructed phylogenetic relationships among 58 hylid taxa using data from two mitochondrial genes (12S, ND1) and two nuclear genes (POMC, c-myc). We find that parallel patterns of species richness have developed in Europe, Asia, and in two separate clades of North American hylids, with the highest richness at midtemperate latitudes (30-35 degrees) on each continent. This pattern is surprising given that hylids overall show higher species richness in the New World tropics and given many standard ecological explanations for the latitudinal diversity gradient (e.g., energy, productivity, mid-domain effect). The replicate pattern in Holarctic hylids seems to reflect specialized tolerance for temperate climate regimes or possibly the effects of competition. The results also suggest that long-range dispersal between continental regions with similar climatic regimes may be easier than dispersal between geographically adjacent regions with different climatic regimes. Our results show the importance of ecology and evolution to large-scale biogeography and the importance of large-scale biogeography to understanding patterns of species richness.  相似文献   

11.
Jetz W  Fine PV 《PLoS biology》2012,10(3):e1001292
Broad-scale geographic gradients in species richness have now been extensively documented, but their historical underpinning is still not well understood. While the importance of productivity, temperature, and a scale dependence of the determinants of diversity is broadly acknowledged, we argue here that limitation to a single analysis scale and data pseudo-replication have impeded an integrated evolutionary and ecological understanding of diversity gradients. We develop and apply a hierarchical analysis framework for global diversity gradients that incorporates an explicit accounting of past environmental variation and provides an appropriate measurement of richness. Due to environmental niche conservatism, organisms generally reside in climatically defined bioregions, or "evolutionary arenas," characterized by in situ speciation and extinction. These bioregions differ in age and their total productivity and have varied over time in area and energy available for diversification. We show that, consistently across the four major terrestrial vertebrate groups, current-day species richness of the world's main 32 bioregions is best explained by a model that integrates area and productivity over geological time together with temperature. Adding finer scale variation in energy availability as an ecological predictor of within-bioregional patterns of richness explains much of the remaining global variation in richness at the 110 km grain. These results highlight the separate evolutionary and ecological effects of energy availability and provide a first conceptual and empirical integration of the key drivers of broad-scale richness gradients. Avoiding the pseudo-replication that hampers the evolutionary interpretation of non-hierarchical macroecological analyses, our findings integrate evolutionary and ecological mechanisms at their most relevant scales and offer a new synthesis regarding global diversity gradients.  相似文献   

12.
Aim Species richness exhibits striking geographical variation, but the processes that drive this variation are unresolved. We investigated the relative importance of two hypothesized evolutionary causes for the variation in palm species richness across the New World: time for diversification and evolutionary (net diversification) rate. Palms have a long history in the region, with the major clades diversifying during the Tertiary (65–2 Ma). Location Tropical and subtropical America (34° N–34° S; 33–120° W). Methods Using range maps, palm species richness was estimated in a 1° × 1° grid. Mean lineage net diversification was estimated by the mean phylogenetic root distance (MRD), the average number of nodes separating a species from the base of the palm phylogeny for the species in each grid cell. If evolutionary rate limits richness, then richness should increase with MRD. If time limits richness, then old, relict species (with low root distance) should predominantly occur in long‐inhabited and therefore species‐rich areas. Hence, richness should decrease with MRD. To determine the influence of net diversification across different time frames, MRD was computed for subtribe, genus and species levels within the phylogeny, and supplemented with the purely tip‐level measure, mean number of species per genus (MS/G). Correlations and regressions, in combination with eigenvector‐based spatial filtering, were used to assess the relationship between species richness, the net diversification measures, and potential environmental and geographical drivers. Results Species richness increased with all net diversification measures. The regression models showed that richness and the net diversification measures increased with decreasing (absolute) latitude and, less strongly, with increasing energy/temperature and water availability. These patterns therefore reflect net diversification at both deep and shallow levels in the phylogeny. Richness also increased with range in elevation, but this was only reflected in the MS/G pattern and therefore reflects recent diversification. Main conclusions The geographical patterns in palm species richness appear to be predominantly the result of elevated net diversification rates towards the equator and in warm, wet climates, sustained throughout most of the Tertiary. Late‐Tertiary orogeny has caused localized increases in net diversification rates that have also made a mark on the richness pattern.  相似文献   

13.
Heterogeneity in rates of trait evolution is widespread, but it remains unclear which processes drive fast and slow character divergence across global radiations. Here, we test multiple hypotheses for explaining rate variation in an ecomorphological trait (beak shape) across a globally distributed group (birds). We find low support that variation in evolutionary rates of species is correlated with life history, environmental mutagenic factors, range size, number of competitors, or living on islands. Indeed, after controlling for the negative effect of species' age, 80% of variation in species‐specific evolutionary rates remains unexplained. At the clade level, high evolutionary rates are associated with unusual phenotypes or high species richness. Taken together, these results imply that macroevolutionary rates of ecomorphological traits are governed by both ecological opportunity in distinct adaptive zones and niche differentiation among closely related species.  相似文献   

14.
Identifying causes of genetic divergence is a central goal in evolutionary biology. Although rates of nucleotide substitution vary among taxa and among genes, the causes of this variation tend to be poorly understood. In the present study, we examined the rate and pattern of molecular evolution for five DNA regions over a phylogeny of Cornus, the single genus of Cornaceae. To identify evolutionary mechanisms underlying the molecular variation, we employed Bayesian methods to estimate divergence times and to infer how absolute rates of synonymous and nonsynonymous substitutions and their ratios change over time. We found that the rates vary among genes, lineages, and through time, and differences in mutation rates, selection type and intensity, and possibly genetic drift all contributed to the variation of substitution rates observed among the major lineages of Cornus. We applied independent contrast analysis to explore whether speciation rates are linked to rates of molecular evolution. The results showed no relationships for individual genes, but suggested a possible localized link between species richness and rate of nonsynonymous nucleotide substitution for the combined cpDNA regions. Furthermore, we detected a positive correlation between rates of molecular evolution and morphological change in Cornus. This was particularly pronounced in the dwarf dogwood lineage, in which genome-wide acceleration in both molecular and morphological evolution has likely occurred.  相似文献   

15.
Within most terrestrial groups of animals, including mammals, species richness varies along two axes of environmental variation, representing energy availability and plant productivity. This relationship has led to a search for mechanistic links between climate and diversity. Explanations have traditionally focused on single mechanisms, such as variation in environmental carrying capacity or evolutionary rates. Consensus, though, has proved difficult to achieve and there is growing appreciation that geographical patterns of species richness are a product of many interacting factors including biogeographic history and biological traits. Here, we review some current hypotheses on the causes of gradients in mammal richness and range sizes since the two quantities are intimately linked. We then present novel analyses using recent datasets to explore the structure of the environment-richness relationship for mammals. Specifically, we consider the impact of glaciation on present day mammalian diversity gradients. We conclude that not only are multiple processes important in structuring diversity gradients, but also that different processes predominate in different places.  相似文献   

16.
Biologists have long searched for mechanisms responsible for the increase in species richness with decreasing latitude. The strong correlation between species richness and climate is frequently interpreted as reflecting a causal link via processes linked to energy or evolutionary rates. Here, we investigate how the aggregation of clades, as dictated by phylogeny, can give rise to significant climate–richness gradients without gradients in diversification or environmental carrying capacity. The relationship between climate and species richness varies considerably between clades, regions and time periods in a global-scale phylogenetically informed analysis of all terrestrial mammal species. Many young clades show negative richness–temperature slopes (more species at cooler temperatures), with the ages of these clades coinciding with the expansion of temperate climate zones in the late Eocene. In carnivores, we find steeply positive richness–temperature slopes in clades with restricted distributions and tropical origins (e.g. cat clade), whereas widespread, temperate clades exhibit shallow, negative slopes (e.g. dog–bear clade). We show that the slope of the global climate–richness gradient in mammals is driven by aggregating Chiroptera (bats) with their Eutherian sister group. Our findings indicate that the evolutionary history should be accounted for as part of any search for causal links between environment and species richness.  相似文献   

17.
Abstract Understanding biodiversity gradients is a long-standing challenge, and progress requires theory unifying ecology and evolution. Here, we unify concepts related to the speed of evolution, the influence of species richness on diversification, and niche-based coexistence. We focus on the dynamics, through evolutionary time, of community invasibility and species richness across a broad thermal gradient. In our framework, the evolution of body size influences the ecological structure and dynamics of a trophic network, and organismal metabolism ties temperature to eco-evolutionary processes. The framework distinguishes ecological invasibility (governed by ecological interactions) from evolutionary invasibility (governed by local ecology and constraints imposed by small phenotypic effects of mutation). The model yields four primary predictions: (1) ecological invasibility declines through time and with increasing temperature; (2) average evolutionary invasibility across communities increases and then decreases through time as the richness-temperature gradient flattens; (3) in the early stages of diversification, richness and evolutionary invasibility both increase with increasing temperature; and (4) at equilibrium, richness does not vary with temperature, yet evolutionary invasibility decreases with increasing temperature. These predictions emerge from the "evolutionary-speed" hypothesis, which attempts to account for latitudinal species richness gradients by invoking faster biological rates in warmer, tropical regions. The model contrasts with predictions from other richness-gradient hypotheses, such as "niche conservatism" and "species energy." Empirically testing our model's predictions should help distinguish among these hypotheses.  相似文献   

18.
Advancing the metabolic theory of biodiversity   总被引:1,自引:0,他引:1  
A component of metabolic scaling theory has worked towards understanding the influence of metabolism over the generation and maintenance of biodiversity. Specific models within this ‘metabolic theory of biodiversity’ (MTB) have addressed temperature gradients in speciation rate and species richness, but the scope of MTB has been questioned because of empirical departures from model predictions. In this study, we first show that a generalized MTB is not inconsistent with empirical patterns and subsequently implement an eco‐evolutionary MTB which has thus far only been discussed qualitatively. More specifically, we combine a functional trait (body mass) approach and an environmental gradient (temperature) with a dynamic eco‐evolutionary model that builds on the current MTB. Our approach uniquely accounts for feedbacks between ecological interactions (size‐dependent competition and predation) and evolutionary rates (speciation and extinction). We investigate a simple example in which temperature influences mutation rate, and show that this single effect leads to dynamic temperature gradients in macroevolutionary rates and community structure. Early in community evolution, temperature strongly influences speciation and both speciation and extinction strongly influence species richness. Through time, niche structure evolves, speciation and extinction rates fall, and species richness becomes increasingly independent of temperature. However, significant temperature‐richness gradients may persist within emergent functional (trophic) groups, especially when niche breadths are wide. Thus, there is a strong signal of both history and ecological interactions on patterns of species richness across temperature gradients. More generally, the successful implementation of an eco‐evolutionary MTB opens the perspective that a process‐based MTB can continue to emerge through further development of metabolic models that are explicit in terms of functional traits and environmental gradients.  相似文献   

19.
Correlations between species richness and climate suggest non-random occupation of environmental space and niche evolution through time. However, the evolutionary mechanisms involved remain unresolved. Here, we partition the occupation of environmental space into intra- and inter-clade components to differentiate a model based on pure conservation of ancestral niches with higher diversification rates in the tropics, and an adaptive radiation model based on shifts in adaptive peaks at the family level allowing occupation of temperate regions. We examined these mechanisms using within- and among-family skewness components based on centroids of 3560 New World bird species across four environmental variables. We found that the accumulation of species in the tropics is a result of both processes. The components of adaptive radiation have family level skewness of species' distributions strongly structured in space, but not phylogenetically, according to the integrated analyses of spatial filters and phylogenetic eigenvectors. Moreover, stronger radiation components were found for energy variables, which are often used to argue for direct climatic effects on diversity. Thus, the correspondence between diversity and climate may be due to the conservation of ancestral tropical niches coupled with repeated broad shifts in adaptive peaks during birds' evolutionary history more than by higher diversification rates driven by more energy in the tropics.  相似文献   

20.
Geographic patterns of species richness ultimately arise through the processes of speciation, extinction, and dispersal, but relatively few studies consider evolutionary and biogeographic processes in explaining these diversity patterns. One explanation for high tropical species richness is that many species-rich clades originated in tropical regions and spread to temperate regions infrequently and more recently, leaving little time for species richness to accumulate there (assuming similar rates of diversification in temperate and tropical regions). However, the major clades of anurans (frogs) and salamanders may offer a compelling counterexample. Most salamander families are predominately temperate in distribution, but the one primarily tropical clade (Bolitoglossinae) contains nearly half of all salamander species. Similarly, most basal clades of anurans are predominately temperate, but one largely tropical clade (Neobatrachia) contains approximately 96% of anurans. In this article, I examine patterns of diversification in frogs and salamanders and their relationship to large-scale patterns of species richness in amphibians. I find that diversification rates in both frogs and salamanders increase significantly with decreasing latitude. These results may shed light on both the evolutionary causes of the latitudinal diversity gradient and the dramatic but poorly explained disparities in the diversity of living amphibian clades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号