首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-1 (IL-1) signal transduction involves the recruitment of the IL-1 receptor-associated kinase-1 (IRAK-1). Subsequent signaling finally leads to nuclear translocation of NFkappaB. We here show that the association and autophosphorylation of IRAK-1 was already detectable 30 s after IL-1 stimulation of ECV 304 cells. Significant levels of IRAK-1 accumulated in the nucleus 30 min after IL-1 stimulation shown by Western blot analysis and confocal laser scanning microscopy. Nuclear transfer of IRAK-1 upon IL-1 stimulation was confirmed in the murine T cell line EL-4. This characterizes nuclear localization of IRAK-1 as a possibly essential event in the IL-1 signaling cascade.  相似文献   

2.
Cloning the Tra1 region of RP1   总被引:4,自引:0,他引:4  
J Watson  L Schmidt  N Willetts 《Plasmid》1980,4(2):175-183
The Tra1 region of RP1 from a derivative with Tn7 inserted into the kanamycin resistance determinant was cloned, using EcoRI, into the multicopy vector plasmid pBR325. For one orientation of the cloned fragment the resultant chimeric plasmid was very frequently lost from the cell, but in the other orientation it was much more stable and also compatible with RP1. Complementation by the stable chimeric plasmid, pED800, of a series of RP1 tra mutants showed that the mutations of all those retaining sensitivity to the P-specific phages PRR1, Pf3, and PR4, or only to PR4, mapped in the Tra1 region, while only 2 out of 20 amber mutations leading to full P-specific phage-resistance did so.  相似文献   

3.
The Sphingosine 1-phosphate receptor (S1P-R) signaling system has proven to be of biological and medical importance in autoimmune settings. S1P1-R is a validated drug target for multiple sclerosis (MS) for which FTY720 (Fingolimod), a S1P1,3–5-R pan-agonist, was recently approved as the first orally active drug for the treatment of relapsing-remitting MS. Transient bradycardia and long half-life are the FTY720 critical pitfalls. This review provides the latest advances on next-generation S1P1-R modulators from 2012 up to date, with an overview of the chemical structures, structure–activity relationships, and relevant biological and clinical properties.  相似文献   

4.
Fibrillin-1 regulates the bioavailability of TGFbeta1   总被引:1,自引:0,他引:1       下载免费PDF全文
We have discovered that fibrillin-1, which forms extracellular microfibrils, can regulate the bioavailability of transforming growth factor (TGF) beta1, a powerful cytokine that modulates cell survival and phenotype. Altered TGFbeta signaling is a major contributor to the pathology of Marfan syndrome (MFS) and related diseases. In the presence of cell layer extracellular matrix, a fibrillin-1 sequence encoded by exons 44-49 releases endogenous TGFbeta1, thereby stimulating TGFbeta receptor-mediated Smad2 signaling. This altered TGFbeta1 bioavailability does not require intact cells, proteolysis, or the altered expression of TGFbeta1 or its receptors. Mass spectrometry revealed that a fibrillin-1 fragment containing the TGFbeta1-releasing sequence specifically associates with full-length fibrillin-1 in cell layers. Solid-phase and BIAcore binding studies showed that this fragment interacts strongly and specifically with N-terminal fibrillin-1, thereby inhibiting the association of C-terminal latent TGFbeta-binding protein 1 (a component of the large latent complex [LLC]) with N-terminal fibrillin-1. By releasing LLC from microfibrils, the fibrillin-1 sequence encoded by exons 44-49 can contribute to MFS and related diseases.  相似文献   

5.
Sp1 transactivation of the TCL1 oncogene   总被引:3,自引:0,他引:3  
  相似文献   

6.
Overexpression of JNK binding domain inhibited glucose deprivation-induced JNK1 activation, relocalization of Daxx from the nucleus to the cytoplasm, and apoptosis signal-regulating kinase 1 (ASK1) oligomerization in human prostate adenocarcinoma DU-145 cells. However, SB203580, a p38 inhibitor, did not prevent relocalization of Daxx and oligomerization of ASK1 during glucose deprivation. Studies from in vivo labeling and immune complex kinase assay demonstrated that phosphorylation of Daxx occurred during glucose deprivation, and its phosphorylation was mediated through the ASK1-SEK1-JNK1-HIPK1 signal transduction pathway. Data from immunofluorescence staining and protein interaction assay suggest that phosphorylated Daxx may be translocated to the cytoplasm, bind to ASK1, and subsequently lead to ASK1 oligomerization. Mutation of Daxx Ser667 to Ala results in suppression of Daxx relocalization during glucose deprivation, suggesting that Ser667 residue plays an important role in the relocalization of Daxx. Unlike wild-type Daxx, a Daxx deletion mutant (amino acids 501-625) mainly localized to the cytoplasm, where it associated with ASK1, activated JNK1, and induced ASK1 oligomerization without glucose deprivation. Taken together, these results show that glucose deprivation activates the ASK1-SEK1-JNK1-HIPK1 pathway, and the activated HIPK1 is probably involved in the relocalization of Daxx from the nucleus to the cytoplasm. The relocalized Daxx may play an important role in glucose deprivation-induced ASK1 oligomerization.  相似文献   

7.
8.
9.
10.
11.
The analysis of a large number of independent mutants in the target of one of the inhibitors of pMB1 replication suggests that RNA1 regulates primer formation by base-pairing with the complementary sequence in the primer precursor. We conclude that the number of bases that are involved in the hydrogen bonding responsible for the specificity of the mechanism that controls plasmid replication and incompatibility properties is not much larger than seven. Five of these bases are located in the central loop and two in loop I of the RNA primer cloverleaf structure. Twenty-two single, double or triple mutants, with different nucleotide sequences in these seven bases, maintain an active mechanism of control, though with altered specificity. The efficiency of the inhibition mechanism correlates with the delta G value of the hydrogen bonds between the nucleotides of the two heptamers postulated to be involved in the interaction. The implications of these findings are discussed, and a molecular model of the interaction between RNA1 and the primer precursor is presented.  相似文献   

12.
13.
 The interleukin (IL)-1 family of proteins plays an important role in inflammatory and defense mechanisms. The recently characterized IL1HY1 cDNA encodes a new member of the IL-1 receptor antagonist family (IL-1ra). In this report, we describe the complete nucleotide sequence of the human IL1HY1 gene. We sequenced approximately 7600 nucleotides and found four coding exons ranging in size from 55 to 2288 nucleotides. The 5′ untranslated region is formed by one of two alternatively used exons and one invariably present exon which also contains the region encoding the first nine amino acids of the protein. IL1HY1 and IL-1ra intron positions are well conserved within the protein-coding region, providing evidence that these genes arose from a duplication of a primordial IL-1 receptor antagonist gene. Received: 15 October 1999 / Revised: 30 December 1999  相似文献   

14.
15.
Nuclear tRNA export plays an essential role in key cellular processes such as regulation of protein synthesis, cell cycle progression, response to nutrient availability and DNA damage and development. Like other nuclear export processes, assembly of the nuclear tRNA export complex in the nucleus is dependent on Ran-GTP/Gsp1p-GTP, and dissociation of the export receptor-tRNA-Ran-GTP/Gsp1p-GTP complex in the cytoplasm requires RanBP1/Yrb1p and RanGAP/Rna1p to activate the GTPase activity of Ran-GTP/Gsp1p-GTP. The Saccharomyces cerevisiae Cex1p and Human Scyl1 have also been proposed to participate in unloading of the tRNA export receptors at the cytoplasmic face of the nuclear pore complex (NPC). Here, we provide evidence suggesting that Cex1p is required for activation of the GTPase activity of Gsp1p and dissociation of the receptor-tRNA-Gsp1p export complex in S. cerevisiae. The data suggest that Cex1p recruits Rna1p from the cytoplasm to the NPC and facilitates Rna1p activation of the GTPase activity of Gsp1p by enabling Rna1p to gain access to Gsp1p-GTP bound to the export receptor tRNA complex. It is possible that this tRNA unloading mechanism is conserved in evolutionarily diverse organisms and that other Gsp1p-GTP-dependent export processes use a pathway-specific component to recruit Rna1p to the NPC.  相似文献   

16.
17.

Background  

Genomic imprinting occurs in both marsupial and eutherian mammals. The CDKN1C and IGF2 genes are both imprinted and syntenic in the mouse and human, but in marsupials only IGF2 is imprinted. This study examines the evolution of features that, in eutherians, regulate CDKN1C imprinting.  相似文献   

18.
Dissolution of alpha-cyclodextrin (alpha-CD) in 9:1 water-nitromethane smoothly generates the title compound, which crystallizes as the pentahydrate in the orthorhombic space group P2(1)2(1)2(1) with a = 9.452(4), b = 14.299(3), c = 37.380(10) A, and Z = 4. Its crystal structure analysis revealed the alpha-CD macrocycle in an unstrained conformation stabilized through a ring of O-2...O-3' hydrogen bonds between five of the six adjacent glucose residues. The nitromethane is located in the alpha-CD cavity in an orientation parallel to the plane of the macrocycle, and assumes two sites of equal population with the nitro group in excessive thermal motion; the guest is held by van der Waals contacts and C-H...O-type hydrogen bonds to the pyranose H-3 and H-5 protons. The packing of the macrocycles in the crystal lattice is of cage herringbone-type with an extensive intra- and intermolecular hydrogen bonding network. The ready formation of a nitromethane inclusion complex in aqueous nitromethane, and the subtleties of its molecular structure amply demonstrate the ease with which water is expelled from the alpha-CD cavity by a more hydrophobic co-solvent.  相似文献   

19.
Placental vascularisation requires the AP-1 component fra1   总被引:11,自引:0,他引:11  
  相似文献   

20.
XCL1, a C class chemokine also known as lymphotactin, is produced by T, NK, and NKT cells during infectious and inflammatory responses, whereas XCR1, the receptor of XCL1, is expressed by a dendritic cell subpopulation. The XCL1-XCR1 axis plays an important role in dendritic-cell-mediated cytotoxic immune response. It has been also shown that XCL1 and XCR1 are constitutively expressed in the thymus and regulate the thymic establishment of self-tolerance and the generation of regulatory T cells. This review summarizes the expression and function of XCL1 and XCR1 in the immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号