首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide synthase (NOS) generates nitric oxide (NO*) by the oxidation of l-arginine. Spin trapping in combination with electron paramagnetic resonance (EPR) spectroscopy using ferro-chelates is considered one of the best methods to detect NO* in real time and at its site of generation. The spin trapping of NO* from isolated NOS I oxidation of L-arginine by ferro-N-dithiocarboxysarcosine (Fe(DTCS)2) and ferro-N-methyl-d-glucamide dithiocarbamate (Fe(MGD)2) in different buffers was investigated. We detected NO-Fe(DTCS)2, a nitrosyl complex, resulting from the reaction of NO* and Fe(DTCS)2, in phosphate buffer. However, Hepes and Tris buffers did not allow formation of NO-Fe(DTCS)2. Instead, both of these buffers reacted with Fe2+, generating sparingly soluble complexes in the absence of molecular oxygen. Fe(DTCS)2 and Fe(MGD)2 were found to inhibit, to a small degree, NOS I activity with a greater effect observed with Fe(MGD)2. In contrast, Fe(MGD)2 was more efficient at spin trapping NO* from the lipopolysaccharide-activated macrophage cell line RAW264.7 than was Fe(DTCS)2. Data suggested that Fe(DTCS)2 and Fe(MGD)2 are efficient at spin trapping NO* but their maximal efficiency may be affected by experimental conditions.  相似文献   

2.
Spin trapping/electron paramagnetic resonance (EPR) spectroscopy allows specific detection of nitric oxide (NO) generation, in vivo. However, in order to detect an EPR signal in living organism, usually a stimulation of immune system with LPS is used to achieve higher than physiological NO levels. Here, we report non-invasive spin trapping of NO in tumors of non-treated, living animals. EPR spectroscopy was performed at S-band to detect NO in Cloudman S91 melanoma tumors growing in the tail of living, syngeneic hosts-DBA/2 mice. Iron (II) N-(dithiocarboxy)sarcosine Fe2+(DTCS)(2) was used as the spin trap. The results were confirmed by X-band ex vivo study. A characteristic three-line spectrum of NO-Fe(DTCS)(2) (A(N)=13 G) was observed (n=4, out of total n=6) in non-treated tumors and in tumors of animals treated with l-arginine. Substrate availability did not limit the detection of NO by spin trapping. Half-life time of the NO-Fe(DTCS)(2) in tumor tissue was about 60 min. The feasibility of non-invasive spin trapping/EPR spectroscopic detection of NO generated in tumor tissue in living animals, without additional activation of the immune system, was demonstrated for the first time.  相似文献   

3.
We have previously suggested that the spin trap agent, N - tert -butyl- &#102 -phenylnitrone (PBN) can function not only as an antioxidant but also as a nitric oxide (NO) donor. To characterize the pharmacological activities of PBN against oxidative damage, we examined the effect of PBN on NO generation under hyperoxic conditions. The formation of NO in mice exposed to 95% oxygen was determined using a NOx analyzer and electron spin resonance (ESR). Levels of NOx, an oxidative product of NO, increased in the blood of mice under these conditions. However, the increase was returned to a normal level by the NOS (nitric oxide synthase) inhibitor, L-NMMA, indicating that the NO was formed via a biosynthetic pathway. In addition, ESR spectra of the liver and brain of control and experimental mice that were measured using Fe(DETC) 2 as an NO trap reagent showed strong ESR signals from NO complexes in the livers of mice exposed to 95% oxygen. When examining the effect of PBN in mice, PBN reduced the NOx formation in the blood under the same hyperoxic conditions. In addition, the ESR intensity of the NO complex was weaker in the PBN-treated mice than in the non-treated mice, showing that PBN possess anti-inflammatory properties. However, under a normal atmosphere, NOx and ESR analyses showed that NO levels increased in PBN-treated mice but not in control mice. These findings suggested that PBN functions as an NO donor under specific physiological conditions. PBN appears to protect against hyperoxia-induced NO toxicity by anti-inflammatory action rather than by serving as an NO donor.  相似文献   

4.
We have previously suggested that the spin trap agent, N-tert-butyl-alpha-phenylnitrone (PBN) can function not only as an antioxidant but also as a nitric oxide (NO) donor. To characterize the pharmacological activities of PBN against oxidative damage, we examined the effect of PBN on NO generation under hyperoxic conditions. The formation of NO in mice exposed to 95% oxygen was determined using a NOx analyzer and electron spin resonance (ESR). Levels of NOx, an oxidative product of NO, increased in the blood of mice under these conditions. However, the increase was returned to a normal level by the NOS (nitric oxide synthase) inhibitor, L-NMMA, indicating that the NO was formed via a biosynthetic pathway. In addition, ESR spectra of the liver and brain of control and experimental mice that were measured using Fe(DETC)2 as an NO trap reagent showed strong ESR signals from NO complexes in the livers of mice exposed to 95% oxygen. When examining the effect of PBN in mice, PBN reduced the NOx formation in the blood under the same hyperoxic conditions. In addition, the ESR intensity of the NO complex was weaker in the PBN-treated mice than in the non-treated mice, showing that PBN possess anti-inflammatory properties. However, under a normal atmosphere, NOx and ESR analyses showed that NO levels increased in PBN-treated mice but not in control mice. These findings suggested that PBN functions as an NO donor under specific physiological conditions. PBN appears to protect against hyperoxia-induced NO toxicity by anti-inflammatory action rather than by serving as an NO donor.  相似文献   

5.
Ammonium salt of N-(dithiocarboxy)sarcosine (DTCS) chelated to ferrous salt was tested as an NO-metric spin trap at room temperature for ex vivo measurement of (.)NO production in murine endotoxaemia. In a chemically defined in vitro model system EPR triplet signals of NO-Fe(DTCS)(2) were observed for as long as 3 hours, only if samples were reduced with sodium dithionite. This procedure was not necessary for the ex vivo detection of (.)NO in endotoxaemic liver homogenates at X-band or in the whole intact organs at S-band, whereas only a weak signal was observed in endotoxaemic lung. These results suggest that in endotoxaemia not only high level of (.)NO, but also the redox properties of liver and lung might determine the formation of complexes of (.)NO with a spin trap. Nevertheless, both S- and X-band EPR spectroscopy is suitable for (.)NO-metry at room temperature using Fe(DTCS)(2) as the spin trapping agent. In particular, S-band EPR spectroscopy enables the detection of (.)NO production in a whole organ, such as murine liver.  相似文献   

6.
The recent development of electron paramagnetic resonance (EPR) permits its application for in vivo studies of nitric oxide (NO). In this study, we tried to obtain 3D EPR images of endogenous NO in the abdominal organs of lipopolysuccaride (LPS) treated mice. Male ICR mice, each weighing about 30 g, received 10 mg/kg of LPS intraperitoneally. Six hours later, a spin trapping reagent comprised of iron and an N-dithiocarboxy sarcosine complex (Fe(DTCS)2, Fe 200 mM, DTCS/Fe = 3) were injected subcutaneously. Two hours after this treatment, the mice were fixed in a plastic holder and set in the EPR system, equipped with a loop-gap resonator and a 1 GHz microwave. NO was detected as an NO-Fe(DTCS)2 complex, which had a characteristic 3-line EPR spectrum. NO-Fe(DTCS)2 complexes in organ homogenates were also measured using a conventional X-band EPR system. NO-Fe(DTCS)2 spectra were obtained in the upper abdominal area of LPS treated mice at 8 h after the LPS injection. 3D EPR tiled and stereoscopic images of the NO distribution in the hepatic and renal areas were obtained at the same time. The NO-Fe(DTCS)2 distribution in abdominal organs was confirmed in each organ homogenate using conventional X-band EPR. This is the first known EPR image of NO in live mice kidneys.  相似文献   

7.
Biologically generated nitric oxide appears to play a pivotal role in the control of a diverse series of physiologic functions. Iron-chelates and low-frequency EPR spectroscopy have been used to verify in vivo production of nitric oxide. The interpretation of in vivo identification of nitric oxide localized at the site of evolution in real time is complicated by the varied kinetics of secretion. The quantitative efficiency of the spectroscopic measurement, so important in understanding the physiology of nitric oxide, remains elusive. The development of a more stable iron-chelate will help better define nitric oxide physiology. In this report, we present data comparing the commonly used ferro-di(N-methyl-D-glucamine-dithiocarbamate) (Fe2+(MGD)2) and the novel chelate ferro-di(N-(dithiocarboxy)sarcosine) (Fe2+(DTCS)2) quantifying the in vitro and in vivo stability of the corresponding spin trapped adducts, NO-Fe(MGD)2 and NO-Fe(DTCS)2. Finally, very low frequency EPR spectroscopy has been used to evaluate the pharmacokinetics of NO-Fe(MGD)2 and NO-Fe(DTCS)2 in mice in real time.  相似文献   

8.
The formation of nitric oxide radicals in the organs of Wistar rats was studied by the ESR method using ferrous-diethyldithiocarbamate complexes as an NO spin trap. It was found that, under the conditions of CCl4-induced hepatosis, a 4.32-5.46-fold increase in the concentrations of NO radical spin adducts in the samples of heart and liver, correspondingly, occurs. After preliminary intraperoral introduction of quercetin and hesperidin, this effect was not observed. Thus, the flavonoids quercetin and hesperidin exert a distinct antioxidant action, substantialy suppressing the hepatosis-induced increase in the intensity of NO radical generation.  相似文献   

9.
Changes in nitric oxide concentration in rat myocardium in vivo during temporary occlusion of the anterior descending coronary artery, followed by reperfusion were studied by microdialysis assay in risk and intact areas by using an NO spin trap (complex of ferrous ions with N-methyl-D, L-glucamine dihiocarbamate, Fe3+-MGD2). The amplitude of the EPR signal of the NO spin adduct NO-Fe2+-MGD2 in the risk area increased during the 40-min occlusion and remained higher than the initial level during 60-min postischemic reperfusion, indicating a substantial nitric oxide production. The size of the infarction in the risk area by the end of reperfusion was 47 +/- 3 %, the contents of ATP, phosphocreatine, and total creatine decreased to 44 +/- 4, 51 +/- 5, and 60 +/- 3 %, correspondingly, as compared with initial values, and the level of lactate was six times higher than the initial one. In the intact area of the left ventricle, the level of nitric oxide and high-energy metabolites did not change throughout the experiment. It was shown that the intensive nitric oxide production, in acute regional ischemia and reperfusion are related to the disturbance of energy metabolism, the damage to cytoplasmic membranes, and the death of cardiomyocytes.  相似文献   

10.
By using the ESR spin trapping technique with the N-methyl-D-glucamine dithiocarbamate (MGD)2-Fe(II) complex, the generation of nitric oxide (NO), a gaseous free radical, was observed in NO spin trapping solution bubbled with the filtered main-stream of cigarette smoke. The ESR signal with a three-line spectrum characteristic of an NO radical, which was not observed immediately after bubbling of smoke, started rapidly increasing with time up to around 25 min after the last addition of ferrous ions Fe(II), and then slowly approached a peak value dependent on the burned cigarette mass and on the smoking speed. The production of NO was, however, much affected by air oxidation and enhanced by the addition of ascorbic acid. A certain concentration of sodium nitrite (NaNO2) solution, in which nitrite NO2- is assumed as the main origin of the NO, mimicked closely the time course of NO generation resulting from the smoke of one cigarette. The cigarette smoke that was passed through alkaline pyrogallol solution as a deoxidizer; however, it exhibited an unchanged intensity of NO signal throughout the measurement. These results strongly suggest that NO would be gradually reproduced from NO2- in the reductive aqueous solution containing excess Fe(II) through NO2, which is initially formed and is concomitantly oxidized from NO in cigarette smoke.  相似文献   

11.
Oxidative alteration of mitochondrial cytochrome c (cyt c) has been linked to disease pathophysiology and is one of the causative factors for pro-apoptotic events. Hydrogen peroxide induces a short-lived cyt c-derived tyrosyl radical as detected by the electron spin resonance (ESR) spin-trapping technique. This investigation was undertaken to characterize the fate and consequences of the cyt c-derived tyrosyl radical. The direct ESR spectrum from the reaction of cyt c with H(2)O(2) revealed a single-line signal with a line width of approximately 10 G. The detected ESR signal could be prevented by pretreatment of cyt c with iodination, implying that the tyrosine residue of cyt c was involved. The ESR signal can be enhanced and stabilized by a divalent metal ion such as Zn(2+), indicating the formation of the protein tyrosine ortho-semiquinone radical (ToQ.). The production of cyt c-derived ToQ. is inhibited by the spin trap, 2-methyl-2-nitrosopropane (MNP), suggesting the participation of tyrosyl radical in the formation of the ortho-semiquinone radical. The endothelium relaxant factor nitric oxide is well known to mediate mitochondrial respiration and apoptosis. The consumption of NO by cyt c was enhanced by addition of H(2)O(2) as verified by inhibition electrochemical detection using an NO electrode. The rate of NO consumption in the system containing cyt c/NO/H(2)O(2) was decreased by the spin traps 5,5-dimethyl pyrroline N-oxide and MNP, suggesting NO trapping of the cyt c-derived tyrosyl radical. The above result was further confirmed by NO quenching of the ESR signal of the MNP adduct of cyt c tyrosyl radical. Immunoblotting analysis of cyt c after exposure to NO in the presence of H(2)O(2) revealed the formation of 3-nitrotyrosine. The addition of superoxide dismutase did not change the cyt c nitration, indicating that it is peroxynitrite-independent. The results of this study may provide useful information in understanding the interconnection among cyt c, H(2)O(2), NO, and apoptosis.  相似文献   

12.
No decrease in iron-sulphur centers was found in cultured macrophage cells (J774) after the treatment with nitric oxide (10(-7) M NO/10(7) cells) during 5 min. The center content was controlled by the electron spin resonance (ESR) method. The macrophages pretreated with dithionite + methyl viologen showed the formation of dinitrosyl iron complexes (DNIC) with a characteristic ESR signal at g approximately 2.03. The data suggest that loosely bound nonheme iron (free iron) mostly contributes to the formation of these complexes. Iron from iron-containing proteins does not release from these centers under the direct action of nitric oxide. The iron-sulphur centers can be destroyed by the products of nitric oxide oxidation (NO2, N2O3, etc.) as oxidizing and acid agents.  相似文献   

13.
Increasing interest in the study of nitric oxide (NO·) in may facets of biological research necessitates a search for accurate techniques to directly identify the free radical. One recently employed strategy for NO· detection is the method of electron spin resonance (ESR) used in combination with nitrone and nitroso spin traps. Applying this technique to our studies with nitric oxide synthase (NOS), we found that NO· generated directly from the enzyme system could not be detected. Further investigation revealed that 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) inhibited NO· generation by NOS at concentrations used fro spin trapping. Reexamining the ability of various nitrones and DBNBS to spin trap authentic NO· dissolved in buffer, we obtained ESR spectra similar to those previously reported for the spin trap DBNBS. However, continuing our studies with 15NO· and N-hydroxylamine, we found these spectra to be artifactual. Our results emphasize the need to synthesized new spin traps, since currently available compounds are not capable of spin trapping NO· generated by NOS.  相似文献   

14.
We have studied receptor-mediated generation of an activator of soluble guanylate cyclase in cultured mouse neuroblastoma cells (clone N1E-115) by ESR/spin trapping spectroscopy. A spin adduct was detected during the activation of muscarinic receptors by carbamylcholine in the presence of the spin trap 3,5-dibromo 4-nitrosobenzene sulphonate (DBNBS). The spin adduct does not correspond to that originating from the free radical nitric oxide or hydroxylamine. The same adduct was generated in cytosol preparations from N1E-115 cells incubated with L-arginine, NADPH, in the presence of calcium. The use of isotopically labelled guanidino-N15-L-arginine supported the generation of a DBNBS spin trapped adduct originating from the guanidino moiety of L-arginine. Superoxide dismutase (SOD) stabilized the precursor of the spin adduct as well as the activator of soluble guanylate cyclase derived from L-arginine. Our results provide direct evidence for the receptor-mediated formation of a diffusible precursor of NO. derived from L-arginine.  相似文献   

15.
The level of nitric oxide production in the intact rabbit organism was studied using the water-soluble complex of Fe3+ with MGD as a selective spin trap for nitric oxide. The Fe(3+)-MGD3 complex was injected intravenously. It was shown by the EPR method that this injection resulted in the formation of paramagnetic complexes in the urine, as Cu(2+)-MGD2, and nitric oxide spin adducts: nitric oxide-Fe(2+)-MGD2 and nitric oxide-Fe(3+)-MGD2. The level of nitric oxide production was estimated by the ratio of the total amount of these adducts to the nitric oxide-Fe(2+)-MGD2 level, formed after the addition of excessive S-nitrosoglutathione. This value for intact animals was 1.33 +/- 0.13%.  相似文献   

16.
We previously found that one of the pharmacological effects of N-tert-butyl-alpha-phenylnitrone (PBN) is the release of nitric oxide (NO) under oxidative conditions. However, to confirm this hypothesis in vivo, NO released from PBN must be distinguished from NO produced in biological systems, and therefore we undertook the synthesis of PBN using labeled 15N to identify its corresponding 15NO in vivo. The properties were examined with an ESR spectrometer. To synthesize 15N-PBN, the starting material, ammonium-15N chloride, was converted to 2-amino-15N-2-methylpropane, oxidized to 2-methyl-2-nitropropane-15N, and finally reacted with benzaldehyde to give 15N-PBN. The final product was purified by repeated sublimation. With ferrous sulfate-methyl glucamine dithiocarbamate complex, Fe (MGD)2, as a trapping agent to measure the NO levels of 15N-PBN or 14N-PBN in vitro, the peak intensity of 15NO[Fe(MGD)2] was over 50% stronger than that of 14NO[Fe(MGD)2], and that 15NO and 14NO had the corresponding two-and three line hyperfine structures due to their nuclear spin quantum numbers. Subsequently, the ESR spectrum of 15NO derived from 15N-PBN was significantly different than that of lipopolysaccharide (LPS)-induced NO, which was derived from biological cells, and therefore we have demonstrated the possibility to distinguish 15NO from PBN and 14NO generated from cells. These results suggested that 15N-PBN is a useful molecule, not only as a spin-trapping agent, but also as an NO donor to explore the pharmacological mechanisms of PBN in vivo.  相似文献   

17.
Heme-regulated eukaryotic initiation factor 2alpha kinase (HRI) regulates the synthesis of hemoglobin in reticulocytes in response to heme availability. HRI contains a tightly bound heme at the N-terminal domain. Earlier reports show that nitric oxide (NO) regulates HRI catalysis. However, the mechanism of this process remains unclear. In the present study, we utilize in vitro kinase assays, optical absorption, electron spin resonance (ESR), and resonance Raman spectra of purified full-length HRI for the first time to elucidate the regulation mechanism of NO. HRI was activated via heme upon NO binding, and the Fe(II)-HRI(NO) complex displayed 5-fold greater eukaryotic initiation factor 2alpha kinase activity than the Fe(III)-HRI complex. The Fe(III)-HRI complex exhibited a Soret peak at 418 nm and a rhombic ESR signal with g values of 2.49, 2.28, and 1.87, suggesting coordination with Cys as an axial ligand. Interestingly, optical absorption, ESR, and resonance Raman spectra of the Fe(II)-NO complex were characteristic of five-coordinate NO-heme. Spectral findings on the coordination structure of full-length HRI were distinct from those obtained for the isolated N-terminal heme-binding domain. Specifically, six-coordinate NO-Fe(II)-His was observed but not Cys-Fe(III) coordination. It is suggested that significant conformational change(s) in the protein induced by NO binding to the heme lead to HRI activation. We discuss the role of NO and heme in catalysis by HRI, focusing on heme-based sensor proteins.  相似文献   

18.
The cellular and subcellular localization of endogenous nitric oxide (NO.) in leaves from young and senescent pea (Pisum sativum) plants was studied. Confocal laser scanning microscopy analysis of pea leaf sections with the fluorescent probe 4,5-diaminofluorescein diacetate revealed that endogenous NO. was mainly present in vascular tissues (xylem and phloem). Green fluorescence spots were also detected in the epidermal cells, palisade and spongy mesophyll cells, and guard cells. In senescent leaves, NO. generation was clearly reduced in the vascular tissues. At the subcellular level, by electron paramagnetic resonance spectroscopy with the spin trap Fe(MGD)(2) and fluorometric analysis with 4,5-diaminofluorescein diacetate, NO. was found to be an endogenous metabolite of peroxisomes. The characteristic three-line electron paramagnetic resonance spectrum of NO., with g = 2.05 and a(N) = 12.8 G, was detected in peroxisomes. By fluorometry, NO. was also found in these organelles, and the level measured of NO. was linearly dependent on the amount of peroxisomal protein. The enzymatic production of NO. from l-Arg (nitric oxide synthase [NOS]-like activity) was measured by ozone chemiluminiscence. The specific activity of peroxisomal NOS was 4.9 nmol NO. mg(-1) protein min(-1); was strictly dependent on NADPH, calmodulin, and BH(4); and required calcium. In senescent pea leaves, the NOS-like activity of peroxisomes was down-regulated by 72%. It is proposed that peroxisomal NO. could be involved in the process of senescence of pea leaves.  相似文献   

19.
The free radical, nitric oxide ( radicalNO), is responsible for a myriad of physiological functions. The ability to verify and study radicalNO in vivo is required to provide insight into the events taking place upon its generation and in particular the flux of radicalNO at relevant cellular sites. With this in mind, several iron-chelates (Fe2+(L)2) have been developed, which have provided a useful tool for the study and identification of radicalNO through spin-trapping and electron paramagnetic resonance (EPR) spectroscopy. However, the effectiveness of radicalNO detection is dependent on the Fe2+(L)2 complex. The development of more efficient and stable Fe2+(L)2 chelates may help to better understand the role of radicalNO in vivo. In this paper, we present data comparing several proline derived iron-dithiocarbamate complexes with the more commonly used spin traps for radicalNO, Fe2+-di(N-methyl-D-glutamine-dithiocarbamate) (Fe2+(MGD)2) and Fe2+-di(N-(dithiocarboxy)sarcosine) (Fe2+(DTCS)2). We evaluate the apparent rate constant (kapp) for the reaction of radicalNO with these Fe2+(L)2complexes and the stability of the corresponding Fe2+(NO)(L)2 in presence of NOS I.  相似文献   

20.
The report describes a method for tracing nitric oxide (NO) distribution in endotoxin-treated mice using in vivo low-frequency L-band (1.1 GHz) electron spin resonance spectroscopy (ESR) in combination with extracellular nitric oxide trapping complex consisting of N-methyl-D-glucamine dithiocarbamate and iron (MGD-Fe). An ESR signal characteristic of the MGD-Fe-NO complex was found in the upper abdomen (liver region), lower abdomen and head region of ICR mice. The origin of NO from the L-arginine-NO synthase (NOS) pathway was confirmed using the NOS inhibitor N(G)-monomethyl-L-arginine (NMMA) and isotopic tracing experiments with 15N-labelled L-arginine. Experiments with mice lacking inducible NOS (iNOS) and matched wild type animals were performed using the NO trapping agent diethyldithiocarbamate (DETC). These experiments demonstrated that endotoxin-induced NO generation in the liver tissue of mice occurs via the iNOS isoform of NOS. The described in vivo ESR technique using a "whole body" resonator allows in vivo on-line detection of endogenous NO in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号