首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent twin studies of clinical malaria and immune responses to malaria antigens have underscored the importance of both major histocompatability complex (MHC) and non-MHC genes in determining variable susceptibility and immune responsiveness. By using a combination of whole genome genetic linkage studies of families and candidate genes analysis, non-MHC genes are being mapped and identified. Human leucocyte antigen (HLA) genotype was found to affect susceptibility to severe malaria in a large study of West African children. T lymphocytes that may mediate such resistance have been identified and their target antigens and epitopes characterized. Some of these epitopes show substantial polymorphism, which appears to result from immune selection pressure. Natural variant epitopes have been found to escape T-cell recognition in cytolytic and other T-cell assays. More recently a novel immune escape mechanism has been described in viral infections, altered peptide ligand antagonism, whereby variants of a T-cell epitope can downregulate or ablate a T cell response to the index peptide. The likely implications of such immune escape mechanisms for the population structure of malaria parasites, for HLA associations with malaria infection and disease, and for the design of new malaria vaccines, are discussed. The evolutionary consequences of such molecular interactions can be assessed by using mathematical models that capture the dynamic of variable host and parasite molecules. Combined genetic, immunological and mathematical analysis of host and parasite variants in natural populations can identify some mechanisms driving host-parasite coevolution.  相似文献   

2.
Hedrick PW 《Heredity》2011,107(4):283-304
The high mortality and widespread impact of malaria have resulted in this disease being the strongest evolutionary selective force in recent human history, and genes that confer resistance to malaria provide some of the best-known case studies of strong positive selection in modern humans. I begin by reviewing JBS Haldane''s initial contribution to the potential of malaria genetic resistance in humans. Further, I discuss the population genetics aspects of many of the variants, including globin, G6PD deficiency, Duffy, ovalocytosis, ABO and human leukocyte antigen variants. Many of the variants conferring resistance to malaria are ‘loss-of-function'' mutants and appear to be recent polymorphisms from the last 5000–10 000 years or less. I discuss estimation of selection coefficients from case–control data and make predictions about the change for S, C and G6PD-deficiency variants. In addition, I consider the predicted joint changes when the two β-globin alleles S and C are both variable in the same population and when there is a variation for α-thalassemia and S, two unlinked, but epistatic variants. As more becomes known about genes conferring genetic resistance to malaria in humans, population genetics approaches can contribute both to investigating past selection and predicting the consequences in future generations for these variants.  相似文献   

3.
4.
Genetic mapping has been widely employed to search for genes linked to phenotypes/traits of interest. Because of the ease of maintaining rodent malaria parasites in laboratory mice, many genetic crosses of rodent malaria parasites have been performed to map the parasite genes contributing to malaria parasite development, drug resistance, host immune response, and disease pathogenesis. Drs. Richard Carter, David Walliker, and colleagues at the University of Edinburgh, UK, were the pioneers in developing the systems for genetic mapping of malaria parasite traits, including characterization of genetic markers to follow the inheritance and recombination of parasite chromosomes and performing the first genetic cross using rodent malaria parasites. Additionally, many genetic crosses of inbred mice have been performed to link mouse chromosomal loci to the susceptibility to malaria parasite infections. In this chapter, we review and discuss past and recent advances in genetic marker development, performing genetic crosses, and genetic mapping of both parasite and host genes. Genetic mappings using models of rodent malaria parasites and inbred mice have contributed greatly to our understanding of malaria, including parasite development within their hosts, mechanism of drug resistance, and host-parasite interaction.  相似文献   

5.
Malaria has been invoked, perhaps more than any other infectious disease, as a force for the selection of human genetic polymorphisms. Evidence for genome-shaping interactions can be found in the geographic and ethnic distributions of the hemoglobins, blood group antigens, thalassemias, red cell membrane molecules, human lymphocyte antigen (HLA) classes, and cytokines. Human immune responses and genetic variations can correspondingly influence the structure and polymorphisms of Plasmodium populations, notably in genes that affect the success and virulence of infection. In Africa, where the burden from Plasmodium falciparum predominates, disease severity and manifestations vary in prevalence among human populations. The evolutionary history and spread of Plasmodium species inform our assessment of malaria as a selective force. Longstanding host-pathogen relationships, as well as recent changes in this dynamic, illustrate the selective pressures human and Plasmodium species place on one another. Investigations of malaria protection determinants and virulence factors that contribute to the complexity of the disease should advance our understanding of malaria pathogenesis.  相似文献   

6.
The malaria parasite Plasmodium falciparum is characterized by high levels of genetic diversity at antigenic loci involved in virulence and immune evasion. Knowledge of the population structure and dynamics of these genes is important for designing control programmes and understanding the acquisition of immunity to malaria; however, high rates of homologous and non-homologous recombination as well as complex patterns of expression within hosts have hindered attempts to elucidate these structures experimentally. Here, we analyse serological data from Kenya using a novel network technique to deconstruct the relationships between patients' immune responses to different parasite isolates. We show that particular population structures and expression patterns produce distinctive signatures within serological networks of parasite recognition, which can be used to discriminate between competing hypotheses regarding the organization of these genes. Our analysis suggests that different levels of immune selection occur within different groups of the same multigene family leading to mixed population structures.  相似文献   

7.
Malaria parasites are a major cause of human mortality in tropical countries and a potential threat for wildlife, as witnessed by the malaria-induced extinction of naive Hawaiian avifauna. Identifying resistance mechanisms is therefore crucial both for human health and wildlife conservation. Patterns of malaria resistance are known to be highly polygenic in both humans and mice, with marked contributions attributed to major histocompatibility (Mhc) genes. Here we show that specific Mhc variants are linked to both increased resistance and susceptibility to malaria infection in a wild passerine species, the house sparrow (Passer domesticus). In addition, links between host immunogenetics and resistance to malaria involved population-specific alleles, suggesting local adaptation in this host-parasite interaction. This is the first evidence for a population-specific genetic control of resistance to malaria in a wild species.  相似文献   

8.
In 2005 Richard Carter's group surprised the malaria genetics community with an elegant approach to rapidly mapping the genetic basis of phenotypic traits in rodent malaria parasites. This approach, which he termed “linkage group selection”, utilized bulk pools of progeny, rather than individual clones, and exploited simple selection schemes to identify genome regions underlying resistance to drug treatment (or other phenotypes). This work was the first application of “bulk segregant” methodologies for genetic mapping in microbes: this approach is now widely used in yeast, and across multiple recombining pathogens ranging from Aspergillus fungi to Schistosome parasites. Genetic crosses of human malaria parasites (for which Richard Carter was also a pioneer) can now be conducted in humanized mice, providing new opportunities for exploiting bulk segregant approaches for a wide variety of malaria parasite traits. We review the application of bulk segregant approaches to mapping malaria parasite traits and suggest additional developments that may further expand the utility of this powerful approach.  相似文献   

9.
P. falciparum malaria is one of the most widespread and deadliest infectious diseases in children under five years in endemic areas. The disease has been a strong force for evolutionary selection in the human genome, and uncovering the critical human genetic factors that confer resistance to the disease would provide clues to the molecular basis of protective immunity that would be invaluable for vaccine development. We investigated the effect of single nucleotide polymorphisms (SNPs) on malaria pathology in a case- control study of 1862 individuals from two major ethnic groups in three regions with intense perennial P. falciparum transmission in Cameroon. Twenty nine polymorphisms in cytokine and toll-like receptor (TLR) genes as well as the sickle cell trait (HbS) were assayed on the Sequenom iPLEX platform. Our results confirm the known protective effect of HbS against severe malaria and also reveal a protective effect of SNPs in interleukin-10 (IL10) cerebral malaria and hyperpyrexia. Furthermore, IL17RE rs708567 GA and hHbS rs334 AT individuals were associated with protection from uncomplicated malaria and anaemia respectively in this study. Meanwhile, individuals with the hHbS rs334 TT, IL10 rs3024500 AA, and IL17RD rs6780995 GA genotypes were more susceptible to severe malarial anaemia, cerebral malaria, and hyperpyrexia respectively. Taken together, our results suggest that polymorphisms in some immune response genes may have important implications for the susceptibility to severe malaria in Cameroonians. Moreover using uncomplicated malaria may allow us to identify novel pathways in the early development of the disease.  相似文献   

10.
The genetic basis of a host's resistance to parasites has important epidemiological and evolutionary consequences. Understanding this genetic basis can be complicated by non-genetic factors, such as environmental quality, which may influence the expression of genetic resistance and profoundly alter patterns of disease and the host's response to selection. In particular, understanding the environmental influence on the genetic resistance of mosquitoes to malaria gives valuable knowledge concerning the use of malaria-resistant transgenic mosquitoes as a measure of malaria control. We made a step towards this understanding by challenging eight isofemale lines of the malaria vector Anopheles stephensi with the rodent malaria parasite Plasmodium yoelii yoelii and by feeding the mosquitoes with different concentrations of glucose. The isofemale lines differed in infection loads (the numbers of oocysts), corroborating earlier studies showing a genetic basis of resistance. In contrast, the proportion of infected mosquitoes did not differ among lines, suggesting that the genetic component underlying infection load differs from the genetic component underlying infection rate. In addition, the mean infection load and, in particular, its heritable variation in mosquitoes depended on the concentration of glucose, which suggests that the environment affects the expression and the evolution of the mosquitoes' resistance in nature. We found no evidence of genotype-by-environment interactions, i.e. the lines responded similarly to environmental variation. Overall, these results indicate that environmental variation can significantly reduce the importance of genes in determining the resistance of mosquitoes to malaria infection.  相似文献   

11.
Malaria is one of the strongest selective pressures in recent human evolution. African populations have been and continue to be at risk for malarial infections. However, few studies have re-sequenced malaria susceptibility loci across geographically and genetically diverse groups in Africa. We examined nucleotide diversity at Intercellular adhesion molecule-1 (ICAM-1), a malaria susceptibility candidate locus, in a number of human populations with a specific focus on diverse African ethnic groups. We used tests of neutrality to assess whether natural selection has impacted this locus and tested whether SNP variation at ICAM-1 is correlated with malaria endemicity. We observe differing patterns of nucleotide and haplotype variation in global populations and higher levels of diversity in Africa. Although we do not observe a deviation from neutrality based on the allele frequency distribution, we do observe several alleles at ICAM-1, including the ICAM-1 Kilifi allele, that are correlated with malaria endemicity. We show that the ICAM-1 Kilifi allele, which is common in Africa and Asia, exists on distinct haplotype backgrounds and is likely to have arisen more recently in Asia. Our results suggest that correlation analyses of allele frequencies and malaria endemicity may be useful for identifying candidate functional variants that play a role in malaria resistance and susceptibility.  相似文献   

12.
Drug pressure in the field is believed to be responsible for the emergence of drug-resistant Plasmodium falciparum, the parasite that causes malaria. Variants of the P. falciparum chloroquine resistance transporter (pfcrt) gene have been shown to be responsible for conferring resistance to the commonly used drug chloroquine. In particular, an amino acid mutation, K76T, was shown to have a strong positive correlation with the chloroquine-resistant varieties of malaria parasites. Global studies have reported highly reduced genetic diversity surrounding K76T in the pfcrt gene, which indicates that the mutation has been a target of positive Darwinian natural selection. However, two recent studies of P. falciparum in India found high genetic diversity in the pfcrt gene, which, at first sight, do not support the role of natural selection in the evolution of chloroquine resistance in India.  相似文献   

13.
Malaria has been a very strong selection pressure in recent human evolution, particularly in Africa. Of the one million deaths per year due to malaria, more than 90% are in sub-Saharan Africa, a region with high levels of genetic variation and population substructure. However, there have been few studies of nucleotide variation at genetic loci that are relevant to malaria susceptibility across geographically and genetically diverse ethnic groups in Africa. Invasion of erythrocytes by Plasmodium falciparum parasites is central to the pathology of malaria. Glycophorin A (GYPA) and B (GYPB), which determine MN and Ss blood types, are two major receptors that are expressed on erythrocyte surfaces and interact with parasite ligands. We analyzed nucleotide diversity of the glycophorin gene family in 15 African populations with different levels of malaria exposure. High levels of nucleotide diversity and gene conversion were found at these genes. We observed divergent patterns of genetic variation between these duplicated genes and between different extracellular domains of GYPA. Specifically, we identified fixed adaptive changes at exons 3-4 of GYPA. By contrast, we observed an allele frequency spectrum skewed toward a significant excess of intermediate-frequency alleles at GYPA exon 2 in many populations; the degree of spectrum distortion is correlated with malaria exposure, possibly because of the joint effects of gene conversion and balancing selection. We also identified a haplotype causing three amino acid changes in the extracellular domain of glycophorin B. This haplotype might have evolved adaptively in five populations with high exposure to malaria.  相似文献   

14.
Plasmodium falciparum malaria remains a global public health threat. Optimism that a highly effective malaria vaccine can be developed stems in part from the observation that humans can acquire immunity to malaria through experimental and natural P. falciparum infection. Recent advances in systems immunology could accelerate efforts to unravel the mechanisms of acquired immunity to malaria. Here, we review the tools of systems immunology, their current limitations in the context of human malaria research, and the human 'models' of malaria immunity to which these tools can be applied.  相似文献   

15.
The profound influence that the genetic makeup of the host has on resistance to malaria infection has been established in numerous animal studies. This genetic heterogeneity is one of the main causes of the difficulties in developing an effective malaria vaccine. Segregation analysis is the first step in identifying the nature of genetic factors involved in the expression of human complex diseases, as infectious diseases. To assess the role of host genes in human malaria, we performed segregation analysis of blood parasite densities in 42 Cameroonian families by using both the unified mixed model and the class D regressive model of analysis. The results provide clear evidence for the presence of a recessive major gene controlling the degree of infection in human malaria. Parameter estimates show a frequency of .44-.48 for the deleterious allele, indicating that about 21% of the population is predisposed to high levels of infection.  相似文献   

16.
A comprehension of the genetics of host resistance to malaria is essential to understanding the complex host/parasite interaction. Current research is directed towards the genetic dissection of both the murine and human host responses to the disease. Significant progress has been made towards the mapping of novel murine resistance loci. In addition, the role of the major histocompatibility complex in the host response has been examined in both animal models and human populations. Several large segregation analyses, association studies and, more recently, linkage analyses have been conducted in different African populations to examine the role of host genetics in both mild and severe malaria. The results of these studies have been collated within this review. The cloning of genes involved in malarial resistance will lead not only to a greater understanding of this complex disease but, potentially, to the development of effective medical intervention.  相似文献   

17.
The success of passive immunization suggests that antibody-based therapies will be effective at controlling malaria. We describe the development of fully human antibodies specific for Plasmodium falciparum by antibody repertoire cloning from phage display libraries generated from immune Gambian adults. Although these novel reagents bind with strong affinity to malaria parasites, it remains unclear if in vitro assays are predictive of functional immunity in humans, due to the lack of suitable animal models permissive for P. falciparum. A potentially useful solution described herein allows the antimalarial efficacy of human antibodies to be determined using rodent malaria parasites transgenic for P. falciparum antigens in mice also transgenic for human Fc-receptors. These human IgG1s cured animals of an otherwise lethal malaria infection, and protection was crucially dependent on human FcgammaRI. This important finding documents the capacity of FcgammaRI to mediate potent antimalaria immunity and supports the development of FcgammaRI-directed therapy for human malaria.  相似文献   

18.
Acquisition of partially protective immunity is a dominant feature of the epidemiology of malaria among exposed individuals. The processes that determine the acquisition of immunity to clinical disease and to asymptomatic carriage of malaria parasites are poorly understood, in part because of a lack of validated immunological markers of protection. Using mathematical models, we seek to better understand the processes that determine observed epidemiological patterns. We have developed an age-structured mathematical model of malaria transmission in which acquired immunity can act in three ways (“immunity functions”): reducing the probability of clinical disease, speeding the clearance of parasites, and increasing tolerance to subpatent infections. Each immunity function was allowed to vary in efficacy depending on both age and malaria transmission intensity. The results were compared to age patterns of parasite prevalence and clinical disease in endemic settings in northeastern Tanzania and The Gambia. Two types of immune function were required to reproduce the epidemiological age-prevalence curves seen in the empirical data; a form of clinical immunity that reduces susceptibility to clinical disease and develops with age and exposure (with half-life of the order of five years or more) and a form of anti-parasite immunity which results in more rapid clearance of parasitaemia, is acquired later in life and is longer lasting (half-life of >20 y). The development of anti-parasite immunity better reproduced observed epidemiological patterns if it was dominated by age-dependent physiological processes rather than by the magnitude of exposure (provided some exposure occurs). Tolerance to subpatent infections was not required to explain the empirical data. The model comprising immunity to clinical disease which develops early in life and is exposure-dependent, and anti-parasite immunity which develops later in life and is not dependent on the magnitude of exposure, appears to best reproduce the pattern of parasite prevalence and clinical disease by age in different malaria transmission settings. Understanding the effector mechanisms underlying these two immune functions will assist in the design of transmission-reducing interventions against malaria.  相似文献   

19.
Murine models have proved to be excellent tools in the support of studies of the human genetic bases of malaria resistance and have enabled the mapping of 12 resistance loci, eight of them controlling parasitic levels and four controlling cerebral malaria. Further studies using this method have identified a Pklr variant that confers resistance to murine malaria, a result that shows the potential of this approach to aid the understanding of mechanisms of disease resistance. In the future, the use of murine models for genetic resistance to malaria could lead to the identification of relevant genetic factors that control this devastating disease.  相似文献   

20.
Placental malaria is a special form of malaria that causes up to 200,000 maternal and infant deaths every year. Previous studies show that two receptor molecules, hyaluronic acid and chondroitin sulphate A, are mediating the adhesion of parasite-infected erythrocytes in the placenta of patients, which is believed to be a key step in the pathogenesis of the disease. In this study, we aimed at identifying sites of malaria-induced adaptation by scanning for signatures of natural selection in 24 genes in the complete biosynthesis pathway of these two receptor molecules. We analyzed a total of 24 Mb of publicly available polymorphism data from the International HapMap project for three human populations with European, Asian and African ancestry, with the African population from a region of presently and historically high malaria prevalence. Using the methods based on allele frequency distributions, genetic differentiation between populations, and on long-range haplotype structure, we found only limited evidence for malaria-induced genetic adaptation in this set of genes in the African population; however, we identified one candidate gene with clear evidence of selection in the Asian population. Although historical exposure to malaria in this population cannot be ruled out, we speculate that it might be caused by other pathogens, as there is growing evidence that these molecules are important receptors in a variety of host-pathogen interactions. We propose to use the present methods in a systematic way to help identify candidate regions under positive selection as a consequence of malaria. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号