首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein misfolding cyclic amplification (PMCA) is a cell-free assay mimicking the prion replication process. However, constraints affecting PMCA have not been well-defined. Although cellular prion protein (PrPC) is required for prion replication, the influence of PrPC abundance on PMCA has not been assessed. Here, we show that PMCA was enhanced by using mouse brain material in which PrPC was overexpressed. Tg(MoPrP)4112 mice overexpressing PrPC supported more sensitive and efficient PMCA than wild type mice. As brain homogenate of Tg(MoPrP)4112 mice was diluted with PrPC-deficient brain material, PMCA became less robust. Our studies suggest that abundance of PrPC is a determinant that directs enhancement of PMCA. PMCA established here will contribute to optimizing conditions to enhance PrPSc amplification by using concentrated PrPC source and expands the use of this methodology.  相似文献   

2.
Exosomes are small membranous vesicles secreted by a number of cell types and can be isolated from conditioned cell media or bodily fluids such as urine and plasma. Exosome biogenesis involves the inward budding of multivesicular bodies (MVB) to form intraluminal vesicles (ILV). When fused with the plasma membrane, the MVB releases the vesicles into the extracellular environment as exosomes. Proposed functions of these vesicles include roles in cell–cell signalling, removal of unwanted proteins, and the transfer of pathogens between cells, such as HIV-1. Another such pathogen which exploits this pathway is the prion, the infectious particle responsible for the transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) of humans or bovine spongiform encephalopathy (BSE) of cattle. Interestingly, this work is mirrored by studies on another protein involved in neurodegenerative disease, the amyloid precursor protein (APP) which is associated with Alzheimer’s disease (AD). Recent work has found APP proteolytic fragments in association with exosomes, suggesting a common pathway previously unknown for proteins associated with neurodegenerative diseases. This review will be discussing the current literature regarding the role of exosomes in secretion of the proteins, PrP and APP, and the subsequent implications for neurodegenerative disease. Australian Society for Biophysics Special Issue: Metals and Membranes in Neuroscience.  相似文献   

3.
An abnormal isoform of prion protein (PrPSc), which is composed of the same amino acids as cellular PrP (PrPC) and has proteinase K (PK)-resistance, hypothetically converts PrPC into PrPSc. To investigate the region important for PrPSc production, we examined the levels of PrPSc in PrP gene-deficient cells (HpL3-4) expressing PrPC deleted of various regions including the octapeptide repeat region (OR) or hydrophobic region (HR). After Chandler or Obihiro prion infection, PrPSc was produced in HpL3-4 cells expressing wild-type PrPC or PrPC deleted of HR at an early stage and further reduced to below the detectable level, whereas cells expressing PrPC deleted of OR showed no PrPSc production. The results suggest that OR of PrPC is required for the early step of efficient PrPSc production.  相似文献   

4.
The association between caprine PrP gene polymorphisms and its susceptibility to scrapie has been investigated in current years. As the ORF of the PrP gene is extremely erratic in different breeds of goats, we studied the PrP gene polymorphisms in 80 goats which belong to 11 Pakistani indigenous goat breeds from all provinces of Pakistan. A total of 6 distinct polymorphic sites (one novel) with amino acid substitutions were identified in the PrP gene which includes 126 (A -> G), 304 (G -> T), 379 (A -> G), 414 (C -> T), 428 (A -> G) and 718 (C -> T). The locus c.428 was found highly polymorphic in all breeds as compare to other loci. On the basis of these PrP variants NJ phylogenetic tree was constructed through MEGA6.1 which showed that all goat breeds along with domestic sheep and Mauflon sheep appeared as in one clade and sharing its most recent common ancestors (MRCA) with deer species while Protein analysis has shown that these polymorphisms can lead to varied primary, secondary and tertiary structure of protein. Based on these polymorphic variants, genetic distance, multidimensional scaling plot and principal component analyses revealed the clear picture regarding greater number of substitutions in cattle PrP regions as compared to the small ruminant species. In particular these findings may pinpoint the fundamental control over the scrapie in Capra hircus on genetic basis.  相似文献   

5.
In this study, a new beta-helical model is proposed that explains the species barrier and strain variation in transmissible spongiform encephalopathies. The left-handed beta-helix serves as a structural model that can explain the seeded growth characteristics of beta-sheet structure in PrP(Sc) fibrils. Molecular dynamics simulations demonstrate that the left-handed beta-helix is structurally more stable than the right-handed beta-helix, with a higher beta-sheet content during the simulation and a better distributed network of inter-strand backbone-backbone hydrogen bonds between parallel beta-strands of different rungs. Multiple sequence alignments and homology modelling of prion sequences with different rungs of left-handed beta-helices illustrate that the PrP region with the highest beta-helical propensity (residues 105-143) can fold in just two rungs of a left-handed beta-helix. Even if no other flanking sequence participates in the beta-helix, the two rungs of a beta-helix can give the growing fibril enough elevation to accommodate the rest of the PrP protein in a tight packing at the periphery of a trimeric beta-helix. The folding of beta-helices is driven by backbone-backbone hydrogen bonding and stacking of side-chains in adjacent rungs. The sequence and structure of the last rung at the fibril end with unprotected beta-sheet edges selects the sequence of a complementary rung and dictates the folding of the new rung with optimal backbone hydrogen bonding and side-chain stacking. An important side-chain stack that facilitates the beta-helical folding is between methionine residues 109 and 129, which explains their importance in the species barrier of prions. Because the PrP sequence is not evolutionarily optimised to fold in a beta-helix, and because the beta-helical fold shows very little sequence preference, alternative alignments are possible that result in a different rung able to select for an alternative complementary rung. A different top rung results in a new strain with different growth characteristics. Hence, in the present model, sequence variation and alternative alignments clarify the basis of the species barrier and strain specificity in PrP-based diseases.  相似文献   

6.
Sporadic and variant Creutzfeldt–Jakob disease brain reference materials available from the UK National Institute for Biological Standards and Control have been subjected to further characterisation by Western blot analysis, with particular reference to the co-occurrence of different abnormal disease-associated prion protein (PrPSc) types. The results confirm the presence of genuine type 1 and type 2 protease-resistant PrP (PrPres) in each of the three sporadic Creutzfeldt–Jakob disease reagents, and provide evidence supporting the lower level presence of type 1 PrPres in the variant Creutzfeldt–Jakob disease reagents. We conclude that these reagents provide a valuable resource for future research and development.  相似文献   

7.
The hallmarks of prion diseases are the conversion of the normal prion into an abnormal protease resistant isoform and its brain accumulation. Purification of the native abnormal prion isoform for biochemical and biophysical studies has been hampered by poor recovery from brain tissue. An epithelial cell transfected with the ovine VRQ allele prion, called Rov9, has been used to select prion high-producer cells by flow cytometry. The representative clone 4 described here produced 6.2 microg of cellular prion protein per mg of total protein extract, representing 8- to 10-fold the amount produced by the Rov9 parental cells. After exposure to the scrapie agent (PG128/98), clone 4 produced 2.6 microg of abnormal isoform per mg of total protein. When infected clone 4 cell cultures were treated with tunicamycin, 80% of the abnormal isoform was deglycosylated. The infectivity of the prions produced in clone 4 cultures was confirmed in a mouse bioassay. Such high-producer clones represent new tools for producing large amounts of glycosylated and/or non-glycosylated PrP(Sc) and for a powerful screening of clinical samples' infectivity.  相似文献   

8.
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy that can affect North American cervids (deer, elk, and moose). Using a novel in vitro conversion system based on incubation of prions with normal brain homogenates, we now report that PrPCWD of elk can readily induce the conversion of normal cervid PrP (PrPC) molecules to a protease-resistant form, but is less efficient in converting the PrPC of other species, such as human, bovine, hamster, and mouse. However, when substrate brain homogenates are partially denatured by acidic conditions (pH 3.5), PrPCWD-induced conversion can be greatly enhanced in all species. Our results demonstrate that PrPC from cervids (including moose) can be efficiently converted to a protease-resistant form by incubation with elk CWD prions, presumably due to sequence and structural similarities between these species. Moreover, partial denaturation of substrate PrPC can apparently overcome the structural barriers between more distant species.  相似文献   

9.
Prion diseases are a group of human and animal neurodegenerative disorders caused by the deposition of an abnormal isoform prion protein (PrPSc) encoded by a single copy prion protein gene (PRNP). Prion disease has been reported in many herbivores but not in Equus and the species barrier might be playing a role in resistance of these species to the disease. Therefore, analysis of genotype of prion protein (PrP) in these species may help understand the transmission of the disease. Xiji donkey is a rare species of Equus not widely reared in Ningxia, China, for service, food and medicine, but its PRNP has not been studied. Based on the reported PrP sequence in GenBank we designed primers and amplified, cloned and sequenced the PRNP of Xiji donkey. The sequence analysis showed that the Xiji donkey PRNP was consisted of an open reading frame of 768 nucleotides encoding 256 amino acids. Amino acid residues unique to donkey as compared with some Equus animals, mink, cow, sheep, human, dog, sika deer, rabbit and hamster were identified. The results showed that the amino acid sequence of Xiji donkey PrP starts with the consensus sequence MVKSH, with almost identical amino acid sequence to the PrP of other Equus species in this study. Amino acid sequence analysis showed high identity within species and close relation to the PRNP of sika deer, sheep, dog, camel, cow, mink, rabbit and hamster with 83.1–99.7% identity. The results provided the PRNP data for an additional Equus species, which should be useful to the study of the prion disease pathogenesis, resistance and cross species transmission.  相似文献   

10.
Cellular prion protein, PrP(C), is essential for the development of prion diseases where it is considered to be a substrate for the formation of the disease-associated conformer, PrP(Sc). In sheep, PrP(C) is abundant in neuronal tissue and is also found at lower concentrations in a range of non-neuronal tissues, including mammary gland. Here, we demonstrate the presence of soluble PrP(C) in the non-cellular, non-lipid fraction of clarified ovine milk. Compared with brain-derived PrP(C), ovine milk PrP(C) displays an increased electrophoretic mobility. Ovine milk PrP(C) is mainly present as three species that differ in the extent of their N-linked glycosylation, with glycoform profiles varying among animals. Similar PrP(C) species are also present in fresh and commercial homogenised/pasteurised bovine milk, with additional N-terminal PrP(C) fragments detectable in ruminant milk and commercial milk products.  相似文献   

11.
The interactions and conformational changes that lead to the conversion of the normal prion protein (PrP(c)) to its pathogenic form, PrP(sc), are still being elucidated. Using Surface Plasma Resonance (SPR), we provide evidence that a synthetic peptide (PrP(144-167)) corresponding to residues comprising the alpha helix 1-beta strand 2 domain of PrP(c) is able to interact and bind to immobilised recombinant human PrP (rHuPrP) in a dose-dependent manner. The interaction is pH dependent with an increase in binding observed as the pH is lowered, particularly between pH 6.5 and pH 5.5 suggesting a specific role for His(155) in the interaction, confirmed by covalent modification of this residue in the peptide with diethylpyrocarbonate (DEPC). Circular dichroism analysis of PrP(144-167) revealed no secondary structure motifs across the pH range investigated. Possible pH related structural changes of immobilised rHuPrP are also discussed with regard to the increased affinity for PrP(144-167).  相似文献   

12.
Some of the most perplexing disorders in medicine are each now known to arise from the conformational instability of an underlying protein. The consequence is a continuum of pathologies with typically a change in fold leading to ordered aggregation and tissue deposition. The serpins provide a structural prototype for these pathologies and give a perspective on the assessment of current proposals as to the conformational basis of both Alzheimer's disease and the transmissible prion encephalopathies.  相似文献   

13.
Transmissible spongiform encephalopathies (TSE) or prion diseases result in aberrant metabolism of prion protein (PrP) and the accumulation of a protease-resistant, insoluble, and possibly infectious form of PrP, PrP-res. Studies of PrP biosynthesis, intracellular trafficking, and degradation has been studied in a variety of tissue culture cells. Pulse-chase metabolic labeling studies in scrapie-infected cells indicated that PrP-res is made posttranslationally from an apparently normal protease sensitive precursor, PrP-sen, after the latter reaches the cell surface. Cell-free reactions have provided evidence that PrP-res itself can induce the conversion of PrP-sen to PrP-res in a highly species- and strain-specific manner. These studies have shed light on the mechanism of PrP-res formation and suggest molecular bases for TSE species barrier effects and agent strain propagation.  相似文献   

14.
Ultrastructural correlates of synaptic and dendritic spines loss have never been studied in detail in human transmissible spongiform encephalopathies (TSEs)—Creutzfeldt–Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) disease and fatal familial insomnia (FFI). In this paper, we describe synaptic alterations as found in brain biopsies from Creutzfeldt–Jakob disease and fatal familial insomnia patients. Our material consisted of brain biopsies obtained by open surgery from one FFI case, one case of variant Creutzfeldt–Jakob disease (vCJD), seven cases of sporadic Creutzfeldt–Jakob disease (sCJD) and one case of iatrogenic (human growth hormone) Creutzfeldt–Jakob disease (iCJD). For electron microscopy, approximately 2 mm3 samples were immersion fixed in 2.5% glutaraldehyde for less than 24 h, embedded in Epon and routinely processed. Grids were examined and photographed in a transmission electron microscope. The synaptic alterations were found constantly; in practically every brain biopsy they were frequent. The accumulation of different subcellular organelles (neuroaxonal dystrophy), dark synapses and branching cisterns were the most frequent findings while concentric arrays of membranes were only rarely found. Autophagic vacuoles are formed in many synapses in all categories of human transmissible encephalopathies. We conclude that synaptic autophagy contributes to overall synaptic loss in brains affected in prion diseases.  相似文献   

15.
Animal models, and human postmortem studies, of prion disease have demonstrated the presence of heightened oxidative stress in the brain, with additional findings supporting the likelihood that the normal isoform of prion protein directly contributes to neuronal antioxidant defences. Although such data are consistent with the postulate that oxidative stress plays a salient pathogenic role in prion disease, it remains possible that oxidative damage represents a secondary or relatively less important phenomenon in neurons already rendered dysfunctional from other primary insults. To provide further insights into the relative pathogenic importance of oxidative stress, we employed a potent manganese-superoxide dismutase/catalase mimetic, EUK-189, as a therapeutic in our mouse model of human prion disease. A significant but relatively modest prolongation of survival in EUK-189-treated mice was observed, which correlated with reductions in oxidative, especially nitrative, damage to proteins when compared to untreated disease controls. Lesion profiling also revealed reductions in spongiform change in specific brain regions of terminally sick EUK-189-treated mice. Our results are consistent with heightened oxidative stress playing a pathogenic role in prion disease but underscore the need for more biologically potent and, most likely, broader spectrum antioxidant treatments if more successful amelioration is to be achieved.  相似文献   

16.
Sun G  Guo M  Shen A  Mei F  Peng X  Gong R  Guo D  Wu J  Tien P  Xiao G 《FEBS letters》2005,579(24):5419-5424
We used a bovine brain cDNA library to perform a yeast two-hybrid assay with bovine mature PrP(C) as bait. The screening result showed that alphaB-crystalline interacted with PrP(C). The interaction was further evaluated both in vivo and in vitro with different methods, such as immunofluorescent colocalization, native polyacrylamide-gel electrophoresis, and IAsys biosensor assays. The results suggested that alphaB-crystalline may have the ability to refold denatured prion proteins, and provided first evidence that alphaB-crystalline is directly associated with prion protein.  相似文献   

17.
The 37-kDa laminin receptor precursor/67-kDa laminin receptor (LRP/LR, also known as ribosomal protein SA, RPSA) has been reported to be involved in cancer development and prion internalization. Previous studies have shown that the LRP/LR is expressed in a wide variety of tissues. In particular, expression of LRP/LR mRNA may be closely related to the degree of PrPSc propagation. This study presents a detailed investigation of the LRP/LR mRNA expression levels in eleven normal ovine tissues. Using real-time quantitative PCR, the highest LRP/LR expression was found in neocortex (p < 0.05). Slightly lower levels were found in the heart and obex. Intermediate levels were seen in hippocampus, cerebellum, spleen, thalamus, mesenteric lymph node, and the lowest levels were present in liver, kidney, and lung. In general, the LRP/LR mRNA levels were much higher in neuronal tissues than in peripheral tissues. The observation that differences in LRP/LR mRNA expression levels are consistent with the corresponding variation in PrPSc accumulation suggests that the 37-kDa/67-kDa laminin receptor may be involved in the regulation of PrPSc propagation.  相似文献   

18.
A specific monoclonal antibody (mAb) V5B2 that discriminates between brain tissue of Creutzfeldt-Jakob disease patients and that from normal controls without proteinase K digestion has been prepared using a 13-residue synthetic peptide P1 from the primary structure of human PrP. In the light of the specific interaction between mAb V5B2 and the pathological isoform of PrP (PrP(Sc)), we investigated the solution behavior of antigen P1 and its interactions with mAb V5B2. Our results show that V5B2 recognizes epitope P1 in dimeric/oligomeric forms in solution and in the fibril-like aggregates, as well as in PrP(Sc) aggregates, and demonstrate that the specific epitope is present in all of these forms, but not in PrP(C).  相似文献   

19.
PrPSc is known to elicit no specific immune response and the immune cells are suspected to support its accumulation. In the present study, we investigated the response of some immune cell types to PrPSc to characterize an observed early transient accumulation of PrPSc. After cells were treated with PrPSc-brain homogenate, PrPSc was transiently accumulated for the first 8–12 h post-exposure then completely cleared by the 5th day of the experiment. The accumulated PrPSc was not a de novo product of the cell PrPC. Further investigation of this phenomenon revealed some potential factors influencing it. These factors included cholesterol homeostasis, temperature, the degradation power of the cell and the availability of sufficient PrPC. Our in vitro results suggest that immune cells, especially macrophages are potential risk factors for the accumulation and intercellular spread of PrPSc if the complete clearance of PrPSc were not fulfilled.  相似文献   

20.
A series of GN8 derivatives were synthesized from various diamines, carboxylic acid derivatives, and nitrogen nucleophiles, and their antiprion activity was tested in TSE-infected mouse neuronal cells. We found that two ethylenediamine units, hydrophobic substituents on the nitrogen atoms, and the diphenylmethane scaffold were essential structural features responsible for the activity. Seven derivatives bearing substituents at the benzylic position exhibited an improved antiprion activity with the IC50 values of 0.51-0.83 μM. Conformational analysis of model compounds suggested that the introduction of the substituent at the benzylic position restricted the conformational variability of the diphenylmethane unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号